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A B S T R A C T

Edge detection is widely believed to be an important early stage in human visual processing. However, there
have been relatively few attempts to map human edge detection filters. In this study, observers had to locate a
randomly placed step edge in brown noise (the integral of white noise) with a f1 2 power spectrum. Their
responses were modelled by assuming the probability the observer chose an edge location depended on the
response of their own edge detection filter to that location. The observer’s edge detection filter was then esti-
mated by maximum likelihood methods. The filters obtained were odd-symmetric and similar to a derivative of
Gaussian, with a peak-to-trough width of 0.1–0.15 degrees. These filters are compared with previous estimates of
edge detectors in humans, and with neurophysiological receptive fields and theoretical edge detectors.

1. Introduction

Edges are an important feature of the retinal image because they
indicate the position of object boundaries and shadows. For that reason,
edge detection has long been considered a vital first step in visual
processing. Neurons sensitive to edges are common in the visual cortex
(Hubel & Wiesel, 1962, 1968) and their receptive fields have been
mapped in detail. However, less has been done to map the “receptive
fields” or templates that underlie the detection of edges in humans.
Previous psychophysical investigations of edge detectors have used
indirect methods, such as subthreshold summation (Kulikowski & King-
Smith, 1973; Shapley & Tolhurst, 1973); or have concentrated on de-
monstrating the existence of odd-symmetric detectors without char-
acterizing their spatial properties (Burr, Morrone, & Spinelli, 1989;
Stromeyer & Klein, 1974). Here I use a method based on classification
images (Murray, 2011) to map the templates used in edge detection and
localization.

Classification images were introduced by Beard and Ahumada
(1998). The idea is that when noise is added to a stimulus, that noise
sometimes takes on the aspect of what the observer is looking for when
they perform a psychophysical task. By correlating observer responses
with the noise, it is possible to determine what observers are really
looking for when they perform a visual task. Typically, the averaged
noise over one response type (yes, or correct) and the averaged noise of
the other response type (no, or incorrect) are subtracted to form an
image of the points in the stimulus the observer uses to perform the task
(Murray, Bennett, & Sekuler, 2002). This is equivalent to the Fisher
discriminant, hence the name “classification” image (because the Fisher
discriminant is a tool for statistical classification). Here, however, we

use a more general maximum likelihood technique. Nonetheless, we
will still refer to the estimated observer templates as classification
images.

In the experiment, observers had to detect and locate a horizontal
step edge by clicking a mouse at its perceived location. The step edge
was embedded in brown noise with frequency spectrum proportional to

f1 2. Brown noise was used because it is ecologically relevant (natural
images have a f1 2 power spectrum (Burton & Moorhead, 1987; Field,
1987)), and because, unlike white noise, it is the kind of noise that
yields localized optimal edge detectors (McIlhagga, 2011). The prob-
ability that the observer clicked at a particular location was assumed to
be a function of the edge detector output at that location. Using max-
imum likelihood estimation, the filter that best fitted the observer re-
sponses was estimated. The filters that were found are like derivative of
Gaussian filters, with a peak-to-trough width of 0.1–0.15 degrees. These
filters are similar to those found by Shapley and Tolhurst (1973).

2. Methods

2.1. Experimental procedure

On each trial, observers were shown a 10 degree tall and 4.5 degree
wide stimulus consisting of a horizontal step edge embedded in hor-
izontal brown noise. The step edge was always dark above and light
below, and could appear anywhere in the central vertical 5 degrees of
the stimulus. The brown noise was generated by a cumulative sum of
white noise samples with a standard deviation of 0.002 in contrast
units, where the contrast of a point with luminance L is given by

−L L 1mean . That is, the brown noise at scan line y is given by ∑ < wj y j,
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where wj is a sample of white Gaussian noise for scanline j. The brown
noise was then shifted so that the mean was zero. An example stimulus
is shown in Fig. 1.

The stimulus stayed on screen until the observer moved a mouse
pointer to click where they believed the edge to be. If the observer
clicked within 0.25 degrees of the true edge location, they were deemed
correct. The edge contrast was controlled by a staircase. If the observer
was deemed correct twice in a row, the edge contrast was reduced by
20%; if deemed incorrect once it was increased by 25%. This staircase
was used to control the contrast of the edge to a point where the task
was moderately difficult, and not for the purpose of threshold calcu-
lation. Following the observer’s response, there was a 1 s delay before
the next stimulus was presented.

Five observers A, C, H, T, and W participated in the experiment (W
is the author). All were aware of the purpose of the experiment.
Observers C, H, and W also collected data using white noise instead of
brown noise (observers A and T were unavailable for the white noise
experiment). A full set of data was collected over a few days, in 12
experimental blocks consisting of 150 trials. At the beginning of each
block, observers were shown a high contrast step edge without noise, so
they knew what they were looking for. The first 10 trials in each block
were discarded prior to analysis. The experiment complied with
University of Bradford Ethics Procedures and was conducted in ac-
cordance with the Code of Ethics of the World Medical Association
(Declaration of Helsinki).

2.2. Calibration & apparatus

Stimuli were displayed on a Sony Multiscan E450 CRT monitor
driven by a Bits++ device in Colour++ mode (Cambridge Research
Systems Ltd. Kent, UK). In Colour++mode, adjacent 8-bit pixels in the
frame buffer are paired to yield 16 bits per pixel for each electron gun,
and the 14 most significant bits are passed to a D/A converter. Stimuli
were calculated and displayed by Matlab (MATLAB Release 2007b, The
MathWorks, Inc., Natick, Massachusetts, United States), using the
Psychophysics Toolbox (Brainard, 1997; Kleiner, Brainard, & Pelli,
2007; Pelli, 1997). The gamma of the monitor was measured using a
ColorCal meter (Cambridge Research Systems, Kent, UK) and linearized
with a lookup table. Display resolution was 1024 by 768 pixels, and the
monitor was viewed at a distance of 1m. Angular resolution was 50.86
pixels per degree.

2.3. Data analysis

Observer responses were analysed by assuming that they first con-
volved the stimulus with an edge detection filter fx to yield a response

= ∗r s fx
i

x
i

x
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Here rx
i( ) is the filter response at position x on trial i, ∗ indicates

convolution, and sx
i( ) is the stimulus contrast at position x in that trial.

This is diagrammed in Fig. 2 (a) and (b).
The most likely location for the edge is the point where the response

rx
i( ) is maximized. However, the filter response in Fig. 2(b) has several

local maxima, and it is possible that the observer might instead choose a
local maximum instead of the global one. Thus, rather than being

Fig. 1. Example stimulus. The stimulus was 10 degrees tall and 4.5 degrees
wide. A step edge (marked here by the arrow) could appear anywhere in the
central vertical 5 degrees.

Fig. 2. The edge detection model. Panel A (top) shows the contrast of a step
edge embedded in brown noise as a function of position. This is the contrast
profile of the stimulus in Fig. 1. This contrast profile is convolved with an edge
detection filter to yield a filter response shown in Panel B (middle). The filter
response is transformed into a probability that the observer locates the edge by
applying a softmax function (panel C, bottom). The true edge location is at −2
degrees, and this is the most likely response for this filter, but a response at
about 1.2 degrees is also possible.
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