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a b s t r a c t 

Time delay is ubiquitous in many real-world physical and biological systems. It typically gives rise to rich 

dynamic behaviors, from aperiodic to chaotic. The stability of such dynamic behaviors is of considerable 

interest for process control purposes. While stability analysis under deterministic conditions has been 

extensively studied, not too many works addressed the issue of stability under uncertainty. Nonetheless, 

uncertainty, in either modeling or parameter estimation, is inevitable in complex system studies. Even for 

high-fidelity models, the uncertainty of input parameters could lead to divergent behaviors compared to 

the deterministic study. This is especially true when the system is at or near the bifurcation point. To this 

end, we investigated generalized polynomial chaos (GPC) to quantify the impact of uncertain parameters 

on the stability of delay systems. Our studies suggested that uncertainty quantification in delay systems 

provides richer information for system stability compared to deterministic analysis. In contrast to the 

robust yet time-consuming Monte Carlo or Latin hypercube sampling method, GPC approach achieves the 

same accuracy but only with a fraction of the computational overhead. 

Published by Elsevier Ltd. 

1. Introduction 

One of the grand challenges in the study of complex system 

behavior is the time delay effect [1] . In fact, time delay is ubiqui- 

tous and inherent in a plethora of physical and biological systems, 

from manufacturing to transportation, ecology and neural science, 

among others [2] . Common causes for time delay in control en- 

gineering include the limited communication capacity and finite 

communication speed, as sensors and actuators are rarely collo- 

cated in control systems. For instance, in steel rolling process, the 

thickness sensor is usually positioned at a certain distance away 

from the rolling gap, leading to measurement delay of the thick- 

ness, which is consequently used in a feedback control scheme 

[3] . In the study of glucose-insulin regulatory system, a time delay 

model is often used to describe the interaction of glucose, insulin 

and glucose-insulin mixture, to account for the delay effect ( ∼30–

45 minutes) of insulin on glucose production [4] for effective and 

personalized treatment. Notably, time delay can give rise to com- 

plicated dynamic behaviors even in simple systems. As such, when 

the time delay for transcription and translation is considered, even 

simple regulatory gene circuit can dramatically alter the course of 

system evolution and exhibit rich steady-state behaviors, includ- 

ing limit cycle, aperiodic, weak/strong chaotic, and even intermit- 
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tent patterns [5] . Hence, time delay dynamic model is promising 

to represent the complex gene regulatory system with a myriad of 

gene circuits and pinpoint gene expressions associated with certain 

diseases. 

Delay differential equations (DDEs) are among the most preva- 

lent tools to describe those dynamic systems with time delay. In 

DDEs, the evolution of the variable of interest y ( t ) depends on its 

state at present time t as well as t − τ in the past, which makes 

it non-Markovian, as indicated in Eq. (1) for a linear scalar system 

with a single discrete delay, 

˙ y ( t ) = ay ( t ) + by ( t − τ ) . (1) 

Similar to ordinary differential equations (ODEs), the solution to 

DDEs can be derived via the characteristic equations. Here, the lin- 

ear scalar DDE in Eq. (1) has transcendental characteristic equation 

−λ + a + b e −λτ = 0 , (2) 

where λ is called the characteristic root or eigenvalue. The solution 

set is often referred to as the spectrum, which bears the biomark- 

ers of the underlying dynamic systems. Remarkably, the presence 

of exponential term e −λτ in Eq. (2) leads to an infinite number 

of possible values of λ, consequently an infinite number of solu- 

tions. In other words, the underlying dynamics is embedded in an 

infinite-dimensional phase space. Therefore, this delay term ren- 

ders solutions of DDEs differ from that of ODEs in a striking man- 

ner. It crucially affects the behavior of complex systems, leading to 
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a complicated trajectory of dynamics and even chaotic motion [6] , 

and poses tremendous challenges to study local stability of equi- 

libria of such systems, one of the key issues in dynamic systems. 

While stability analysis of dynamic systems with delay has been 

extensively explored [7–9] , the performance under uncertainty has 

not been well investigated. Nonetheless, just like any real-world 

complex systems, those delay systems are not immune to a wide 

range of uncertainty in modeling, initial and boundary conditions 

as well as model parameter calibration. Therefore, there is a press- 

ing need to quantify such uncertainty for reliable feedback con- 

trol or robust process optimization. While Monte Carlo (MC) sim- 

ulation is the most prevalent method to quantify uncertainties, it 

inevitably leads to immense computational cost due to the large 

number of samples required [10] . This has stymied its applica- 

tion in critical settings such as real-time feedback control. On the 

other hand, effective sampling approaches have been studied, in- 

cluding quasi-Monte Carlo (QMC) [11] and space filling design al- 

gorithms (e.g., variations of Latin hypercube design [12,13] ). QMC 

capitalizes on a low-discrepancy sequence for faster rate of con- 

vergence, compared to the pseudorandom sequence in MC, and 

may only marginally save computational budget. Latin hypercube 

design (LHD) largely hinges on the quality and quantity of sam- 

pling points. As an alternative, general polynomial chaos (GPC) 

[14] is a spectral expansion method and independent of the sam- 

pling points, conducive for large-scale simulations. To this end, we 

investigated the stability of delay systems under uncertainty using 

GPC. The focus of this present research is only on the parameter 

uncertainty in systems with single discrete delay, but it is applica- 

ble to general continuous time delays. 

2. Stability analysis of DDEs 

Stability of DDEs have been extensively studied in literature, us- 

ing a variety of approaches, including Laplace transform [15] , Lya- 

punov functions [16] , perturbation analysis [17] , Lambert W func- 

tions [7,18] , semi-discretization [8] , and Galerkin approximation 

[9] . Whereas other models mentioned here suffers from the in- 

tricate mathematical formulations, Lambert W function is of par- 

ticular interest for first order DDEs, whose characteristic equa- 

tion has the explicit form of mapping we w �→ z for scalar w, z ∈ C 

(set of complex numbers). As such, the eigenvalues can be solved 

in a straightforward way using the Lambert function W , satis- 

fying w = W (z) , the inverse of the mapping we w �→ z [7] . It has 

an infinite number of branches W k (z) = { w ∈ C : w e w = z } , k = 

0 , ±1 , ± 2 , ±3 , . . . [19] , corresponding to the infinite number of 

solutions for the DDE in Eq. (1) . Concretely, the characterization 

equation in Eq. (2) can be reformulated as 

( λ − a ) τ e ( λ−a ) τ = bτ e −aτ . (3) 

That is, w = ( λ − a ) τ and z = bτ e −aτ . Therefore, eigenvalues λk = 

W k ( bτ e −aτ ) 
τ + a . The stability is determined upon the principal 

branch at k = 0 , namely, λ0 = 

W 0 ( bτ e −aτ ) 
τ + a . The dynamic evolu- 

tion is unstable, if λ0 lies to the right of the imaginary axis, i.e., 

Re ( λ0 ) > 0. 

For the second or higher order DDEs, matrix Lambert W func- 

tion has recently been developed, which registered comparable 

stability chart to that obtained using bifurcation analysis [7] . Al- 

though the matrix Lambert W function is conceptually easy to un- 

derstand, as it resembles the state transition matrix in linear ODEs, 

it is only restricted to a certain class of DDEs and the mathemat- 

ical formulation is usually cumbersome. Thus, discretization and 

semi-discretization approaches have been developed to approxi- 

mate λ for higher-order DDEs. Among them, temporal finite ele- 

ment method has garnered enormous attentions, for example, in 

the applications of machining [20] . 

3. Stability analysis under uncertainty 

However, most existing works do not consider the uncertainty 

associated with modeling and parametrization. Indeed, due to lim- 

itations in experimental study or calibration and measurement er- 

ror, the process parameters cannot be exactly specified and are 

often modeled as random quantities in a probabilistic framework. 

The most straightforward way to quantify the impact of such un- 

certainty on stability is the Monte Carlo (MC) simulation. It is a 

brute force model in that it relies on large samples from the un- 

derlying random distribution. The system behavior is then evalu- 

ated as the mean response of those sampled realization, and it 

is often infeasible due to the overwhelming computational over- 

head involved. While Latin hypercube design (LHD) [21] tends to 

optimize the sampling process in MC, it is still a sampling-based 

approach, and only marginally relieve the computational cost. As 

a potential remedy for the huge computational overhead involved 

in sampling-based approaches, generalized polynomial chaos (GPC) 

expansions have arisen as an efficient alternative to represent 

stochastic quantities as spectral expansions of orthogonal polyno- 

mials [14] . 

3.1. Generalized polynomial chaos (GPC) 

The generalized polynomial chaos (GPC) is based on the origi- 

nal Wiener’s theory of homogeneous chaos [22] . A stochastic pro- 

cess λ0 ( ξ , t ) or simply a random variable/function λ0 ( ξ ) with finite 

second-order moment can be expressed as a convergent series of 

polynomials, viz., λ0 ( ξ , t ) = 

∞ ∑ 

i =0 

c i (t) φi (ξ ) . Here, ξ is the underly- 

ing random variable, φi ( ξ ) denotes the polynomial series conform- 

ing to the distribution of ξ , and c i is the corresponding coeffi- 

cient. This spectral expansion offers fast exponential convergence 

rate, and is a cheap alternative to MC simulations. According to 

the Wiener–Askey scheme [23] , GPC expansion with Hermite poly- 

nomial basis has been used effectively to quantify uncertainty with 

Gaussian inputs, Jacobian polynomials for beta distribution, and so 

on. The polynomial bases φi 
′ s are orthogonal in that 〈

φi , φ j 

〉
ρ( ξ ) 

= E 
[
φi ( ξ ) φ j ( ξ ) 

]
= ∫ φi ( ξ ) φ j ( ξ ) ρ( ξ ) dξ

= �i δi j , i, j ∈ N (4) 

where ρ( ξ ) represents the probability density function (PDF) 

of ξ , and 〈 · , · 〉 is the inner product operator with respect 

to ρ( ξ ). δi j = { 0 , i � = j 

1 , i = j 
denotes the Kronecker function. The in- 

tegration in Eq. (4) is oftentimes approximated using Gaus- 

sian quadrature rules. With N quadrature points and weights 

{ ( ξ (k ) , ω 

(k ) ) : k = 1 , 2 , . . . , N } , 

�i = 

N ∑ 

k =1 

ω 

( k ) φi 

(
ξ ( k ) 

)
φi 

(
ξ ( k ) 

)
. (5) 

The coefficient c i can be determined by the intrusive stochas- 

tic Galerkin [23] , in which the variable of interest λ0 ( ξ , t ) is pro- 

jected onto the polynomial basis φi ( ξ ) as 〈 λ0 ( ξ , t ), φj 〉 ρ( ξ ) to min- 

imize the spectral expansion approximation (see Section 4 for de- 

tails). Therefrom, the distribution of λ0 ( ξ , t ) can be characterized 

as E[ λ0 ( ξ , t ) ] = �0 and var ( λ0 ( ξ , t ) ) = 

∞ ∑ 

i =1 

[ c i (t) ] 2 �i [23] . 

3.2. Maximum entropy method 

Further, we are more interested in the distribution of λ0 and 

P ( λ0 ) > 0 in the stability analysis. To this end, we extracted the first 

four raw moments from GPC representation, and adopted the max- 

imum entropy principle (MEP) [24] to estimate the PDF f λ0 
( λ0 ) of 
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