
Chaos, Solitons and Fractals 116 (2018) 340–347 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

A new mathematical formulation for a phase change problem with a 

memory flux 

Sabrina D. Roscani ∗, Julieta Bollati , Domingo A. Tarzia 

CONICET - Depto. Matemática, FCE, Univ. Austral, Paraguay 1950, S20 0 0FZF Rosario, Argentina 

a r t i c l e i n f o 

Article history: 

Received 11 June 2018 

Revised 16 August 2018 

Accepted 11 September 2018 

MSC: 

Primary 

35R35 

26A33 

35C05 

Secondary 

33E20 

80A22 

Keywords: 

Stefan problem 

Fractional diffusion equation 

Riemann–Liouville derivative 

Caputo derivative 

Memory flux 

Equivalent integral relation 

a b s t r a c t 

A mathematical formulation for a one-phase change problem in a form of Stefan problem with a memory 

flux is obtained. The hypothesis that the integral of weighted backward fluxes is proportional to the gra- 

dient of the temperature is considered. The model that arises involves fractional derivatives with respect 

to time both in the sense of Caputo and of Riemann–Liouville. An integral relation for the free boundary, 

which is equivalent to the “fractional Stefan condition”, is also obtained. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The theory related to heat diffusion has been extensively devel- 

oped in the last century. Modelling classical heat diffusion comes 

hand in hand with Fourier Law. Nevertheless, we shall not forget 

that this famous law is an experimental phenomenological princi- 

ple. 

In the past 40 years, many generalized flux models of the clas- 

sical one (i.e. the one derived from Fourier Law) were proposed in 

the literature and accepted by the scientific community. See e.g. 

[8,16–18,37] . 

In this paper a phase change problem for heat diffusion under 

the hypothesis that the heat flux is a flux with memory is anal- 
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ysed. This kind of problems are known in the literature as Stefan 

problems [41,42] . 

The model obtained under the memory assumption is known 

as an anomalous diffusion model, and it is governed by fractional 

diffusion equations. There is a vast literature in the subject of frac- 

tional diffusion equations. We refer the reader to [24,30,31] and 

references therein. 

The study of anomalous diffusion has its origins in the investi- 

gation of non-Brownian motions (Random walks). In that context it 

was observed that “the mean square displacement” of the particles 

is proportional to a power of the time, instead of being propor- 

tional just to time. An exhaustive work in this direction has been 

done by Metzler and Klafter [26] . Other articles in this direction 

are [19,25,27,28] . It is worth mentioning that many works (see e.g. 

[3,12,40] ) suggest that the anomalous diffusion is caused by het- 

erogeneities in the domain. 

Before presenting the problem, let us establish some usual no- 

tation related to heat conduction with the corresponding physical 
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dimensions. Let us write T for temperature, t for time, m for mass 

and X for position. 

u temperature [ T ] 

k thermal conductivity 

[
m X 

Tt 3 

]
ρ mass density 

[ 
m 

X 

3 

] 
c specific heat 

[
X 

2 

T t 2 

]

d = 

k 

ρc 
diffusion coefficient 

[
X 

2 

t 

]

l latent heat per unit mass 

[
X 

2 

t 2 

]

(1) 

Consider a temperature function u = u (x, t) and its correspond- 

ing flux J ( x, t ), both defined for a semi-infinite unidimensional ma- 

terial. From the First Principle of Thermodynamics, we deduce the 

continuity equation 

ρc 
∂u 

∂t 
(x, t) = − ∂ J 

∂x 
(x, t) . (2) 

The aim of this work is to derive a model by considering a special 

non-local memory flux. For example, Gurtin and Pipkin [15] (ex- 

perts in continuum mechanics and heat transfer) proposed in 1968 

a general theory of heat conduction with finite velocity waves 

through the following non local flux law: 

J(x, t) = K(t) ∗
(

−k 
∂ 

∂x 
u (x, t) 

)
= −k 

∫ t 

−∞ 

K(t − τ ) 
∂ 

∂x 
u (x, τ )d τ, 

(3) 

where K is a positive decreasing kernel which verifies K ( s ) → 0 

when s → ∞ . 

Let us comment on some different explicit and implicit defini- 

tions of fluxes, and their effects on the resulting governing equa- 

tions: 

• Explicit forms for the flux: J(x, t) = F (x, t) 

The classical law for the flux is the Fourier Law , which states 

that the flux J is proportional to the temperature gradient, that 

is: 

J(x, t) = −k 
∂ 

∂x 
u (x, t) . (4) 

If alternatively suppose that the flux at the point ( x, t ) is pro- 

portional to the total flux, then the given law is the following: 

J(x, t) = 

1 

˜ τ

∫ t 

−∞ 

−k 
∂ 

∂x 
u (x, τ )d τ. (5) 

In (5) , ˜ τ is a constant whose physical dimension is time. An- 

other interesting thing is that (5) can be interpreted as a gen- 

eralized sum of backward fluxes, where every local flux has the 

same “relevance”. 

The following expression for the flux is a generalized sum of 

weighted backward fluxes. There is now a kernel which assigns 

more weight (“importance”) to the nearest temperature gradi- 

ents, that is: 

J(x, t) = − ηα

�(α) 

∫ t 

−∞ 

(t − τ ) α−1 k 
∂ 

∂x 
u (x, τ )d τ. (6) 

Here, α is a constant in the interval (0,1) that plays an impor- 

tant role, and ηα is a constant imposed to equate units of mea- 

sures. Both will be specified later. 

Note that (4) and (6) result from considering the kernels 

K 1 ( t ) ≡ δ( t ) and K 2 (t) = ηα
t α−1 

�(α) 
, respectively, in the generalized 

flux equation (3). 

• Implicit forms for the flux: F (x, t, J(x, t)) = G (x, t) . 

One of the most famous formulations for the flux, is given by 

the Cattaneo’s equation [6] 

J(x, t) + ˜ τ
∂ 

∂t 
J(x, t) = −k 

∂ 

∂x 
u (x, t) , (7) 

which was proposed with the aim of introducing an alternative 

to the “unphysical” property of the diffusion equation known as 

infinite speed of propagation . Eq. (7) can be seen as a first order 

Taylor approximation of (8) in which the flux is allowed to ad- 

just to the gradient of the temperature according to a relaxation 

time ˜ τ , 

J(x, t + ˜ τ ) = −k 
∂ 

∂x 
u (x, t) . (8) 

Another approach assumes that the integral of the back fluxes, 

at the current time, is proportional to the gradient of the tem- 

perature: 

1 

˜ τ

∫ t 

−∞ 

J(x, τ )d τ = −k 
∂ 

∂x 
u (x, τ ) . 

Yet another formulation considers that the integral of the 

weighted backward fluxes at the current time, is proportional to 

the gradient of the temperature : 

να

�(1 − α) 

∫ t 

−∞ 

(t − τ ) −α J(x, τ )d τ = −k 
∂ 

∂x 
u (x, τ ) . (9) 

Note 1. Although when we talk about backward fluxes it is log- 

ical to consider the lower limit of the integral at −∞ , we can 

suppose that the function u has remained constant (for some 

reason) for all t < 0, where with 0 we refer to a certain initial 

time. Moreover, under this condition, that is u ( x, t ) ≡ u 0 , for ev- 

ery t < 0, the expressions (6) and (9) become 

J(x, t) = − ηα

�(α) 

∫ t 

0 

(t − τ ) α−1 k 
∂ 

∂x 
u (x, τ )d τ, (10) 

and 

να

�(1 − α) 

∫ t 

0 

(t − τ ) −α J(x, τ )d τ = −k 
∂ 

∂x 
u (x, τ ) , (11) 

respectively. 

Expressions (10) and (11) are closely linked to fractional calcu- 

lus. Let us present the basic definitions that will be employed 

throughout the article. 

Definition 1. Let [ a, b ] ⊂ R and α ∈ R 

+ be such that n − 1 < α ≤ n . 

1. For f ∈ L 1 [ a, b ], we define the fractional Riemann–Liouville inte- 

gral of order α as 

a I 
α f (t) = 

1 

�(α) 

∫ t 

a 

(t − τ ) α−1 f (τ )d τ. 

2. For f ∈ AC n [ a, b] = 

{
f | f (n −1) is absolutely continuous on [a,b] 

}
, 

we define the fractional Riemann–Liouville derivative of order α
as 

RL 
a D 

α f (t) = 

[
D 

n 
a I 

n −α f 
]
(t) = 

1 

�(n − α) 

d n 

dt n 

∫ t 

a 

(t − τ ) n −α−1 f (τ )d τ. 

3. For f ∈ W 

n (a, b) = 

{
f | f (n ) ∈ L 1 [ a, b] 

}
, we define the fractional 

Caputo derivative of order α as 

C 
a D 

α f (t) = 

[
a I 

n −α(D 

n f ) 
]
(t) 

= 

{ 

1 

�(n − α) 

∫ t 

a 

(t − τ ) n −α−1 f (n ) (τ )d τ, n − 1 < α < n, 

f (n ) (t) , α = n. 
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