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The self-oscillatory dynamics is considered as motion of a particle in a potential field in the presence 

of dissipation. Described mechanism of self-oscillation excitation is not associated with peculiarities of a 

dissipation function, but results from properties of a potential, whose shape depends on a system state. 

Moreover, features of a potential function allow to realize the self-oscillation excitation in a case of the 

dissipation function being positive at each point of the phase space. The phenomenon is explored both 

numerically and experimentally on the example of a double-well oscillator with a state-dependent po- 

tential and dissipation. After that a simplified single-well model is studied. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The problem of the self-sustained oscillation existence in 

autonomous dynamical systems was originally introduced by 

Poincare [1] . Thereafter bifurcation mechanisms of self-sustained 

oscillation excitation were described by Andronov and his asso- 

ciates [2] and Hopf [3,4] . Despite the issue of the self-sustained 

oscillations is known for over a century, this topic is still attrac- 

tive and interesting. This is due to the fact that self-sustained os- 

cillators are of a frequent occurrence in physics [5–8] , chemistry 

[9–11] , geology [12,13] , climatology [14–16] , biology [17–20] , eco- 

nomics [21,22] and other fields. Problematics of self-oscillations in 

deterministic systems includes regular periodical motions as well 

as the chaotic dynamics [23–25] . There are well-known stochas- 

tic effects, which are related to the self-oscillation topic: stochastic 

bifurcations (in the context of the stochastic Andronov–Hopf bifur- 

cation [26–30] ), coherence resonance [31–36] , stochastic synchro- 

nization [37–39] , stochastic resonance [40,41] . Since a class of the 

self-oscillatory systems includes a broad variety of dynamical sys- 

tems with different nature and features, the problem of general 

description and interpretation is significantly important. This issue 

will be discussed in the present paper. 

The dynamics of an oscillator with one degree of freedom can 

be interpreted as motion of a particle in a potential field in the 

presence of dissipation. In that case a mathematical model of the 
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oscillator is presented in the following form: 

d 2 y 

dt 2 
+ γ

dy 

dt 
+ 

dU 

dy 
= 0 , (1) 

where the factor γ characterizes dissipation, U is a function denot- 

ing the potential field. Typically, the potential function is assumed 

to be univariate: U = U(y ) . Depending upon the specific of the dy- 

namical system (1) , the dissipation factor γ can be either a fixed 

parameter, γ = const, or a state-dependent function γ = γ (y, dy 
dt 

) . 

In the presence of constant dissipation ( γ = const) the determinis- 

tic model (1) exhibits two kinds of the behaviour in the potential 

well: either damped oscillation in case γ > 0 or oscillations with 

unlimited amplitude growth in case γ < 0. If the dissipation de- 

pends on a system state and the function γ (y, dy 
dt 

) possesses nega- 

tive values in some area of the phase space, self-oscillation excita- 

tion can be achieved. In such a case the self-oscillation excitation 

is a result of the negative dissipation action, which is associated 

with pumping of energy. 

The described principle is simply illustrated on the example of 

the Van der Pol self-sustained oscillator [42] , which is described by 

the following equation: 

d 2 y 

dt 2 
+ 

(
y 2 − ε 

)dy 

dt 
+ y = 0 , (2) 

where y is the dynamical variable, ε is the parameter, which deter- 

mines the dynamics. Autonomous system (2) exhibits the regular 

quiescent or self-oscillatory dynamics, while the non-autonomous 

model can realize singular solutions [43] . In terms of motion of a 

particle in a potential field the system (2) describes oscillations in 

the potential U(y ) = 

1 
2 y 

2 + K (the constant K is neglected in the 
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Fig. 1. System (2) . Description of the dynamics as motion of a particle in the potential field U(y ) = 

1 
2 

y 2 (upper panels) and corresponding time realization y ( t ) (lower panels) 

at ε = −0 . 1 (a) and ε = 0 . 1 (b). The grey area corresponds to negative values of the dissipation function γ ( y ). 

following, K = 0 ) in the presence of dissipation defined by the fac- 

tor γ = γ (y ) = y 2 − ε . In case ε < 0 the dissipation function γ ( y ) 

is positive at any values of y . Then oscillations y ( t ) are damped 

and all trajectories are attracted to a stable equilibrium point in 

the origin, corresponding to a potential well bottom ( Fig. 1 (a)). If 

ε > 0, the function γ ( y ) possesses negative values in the vicinity of 

a potential well bottom (the grey area in Fig. 1 (b)) and the equi- 

librium point in the origin becomes unstable. The phase point is 

repelled from the unstable steady state and goes out of the area 

corresponding to negative γ ( y ). After that the amplitude growth 

slows down and stops. After transient time stationary periodical 

self-oscillations are organized. There is energy balance between 

dissipation and pumping during the period of the self-oscillations. 

The same principle of self-oscillation excitation takes place in the 

Rayleigh [44] self-oscillator, FitzHugh–Nagumo model [45,46] and 

in other examples of self-sustained oscillators. 

Another principle of self-oscillation excitation is described in 

the current paper. As will be shown below, the self-oscillation exci- 

tation can be realized in the system (1) in a case of the dissipation 

factor γ being positive at each point of the phase space. This phe- 

nomenon becomes possible due to specific features of the potential 

function assumed to be bivariate, U = U(y, dy 
dt 

) . In other words, the 

problem of motions of the point mass in a state-dependent poten- 

tial field with positive dissipation will be considered. 

At first, the explored issue will be numerically and experimen- 

tally studied in the context of a model of a double-well oscilla- 

tor with state-dependent dissipation and potential, which exhibits 

hard oscillation excitation. Then a simplified model, Eq. (1) with 

the positive drag coefficient γ > 0, which demonstrates soft self- 

oscillation excitation, will be proposed. It has to be noted that the 

used term “self-oscillation excitation under condition of positive 

dissipation” is correct only in the context of motion of a particle 

in a potential field. Generally, dissipativity of the considered sys- 

tems is characterized by the divergence of the phase space flow. 

The divergence corresponding to the self-oscillatory dynamics in 

the studied models is positive in some regions of the phase space, 

while it is negative in other areas. In this point of view the occur- 

rence of self-oscillatory behaviour traced by a stable limit cycle is 

understandable and logical. 

Numerical modelling of the studied systems was carried out by 

integration using the Heun method [47] with the time step �t = 

0 . 0 0 01 . 

Fig. 2. (a) Schematic circuit diagram of double-well oscillator with nonlinear dissi- 

pation; (b) Current–voltage characteristic of element N corresponding to parameters 

a = 200 , b = 0 . 2 , g = 0 . 1 . 

2. Self-oscillatory motion in a double-well state-dependent 

potential field in the presence of positive dissipation 

Fig. 2 (a) shows the system under study. It is a simplified mod- 

ification of the bistable self-oscillator, offered in the paper [41] . 

Fig. 2 (a) shows a parallel oscillatory circuit including the nega- 

tive resistance -R and the nonlinear element N with the current–

voltage characteristic i N (V ) = 

V 
aV 2 + b + gV ( Fig. 2 (b)). By using the 

Kirchhoff’s current law the following differential equations for the 

voltage V across the capacitor C and the current i through the in- 

ductor L can be derived: ⎧ ⎨ 

⎩ 

C 
dV 

dt ′ + i + 

V 

aV 

2 + b 
+ gV = 0 , 

V = L 
di 

dt ′ − Ri. 

(3) 

In the dimensionless variables x = V/V 0 and y = i/i 0 with V 0 = 1 V, 

i 0 = 1 A and dimensionless time t = [(V 0 / (i 0 L )] t ′ , Eq. (3) can be 

re-written as, { 

ε ̇ x = −y − gx − x 

ax 2 + b 
, 

˙ y = x + my, 
(4) 

where ˙ x = 

dx 
dt 

, ˙ y = 

dy 
dt 

, the parameter ε sets separation of slow and 

fast motions, other parameters are g, a, b, m > 0. Eq. (4) can be 

written in the “coordinate-velocity” form with the dynamical vari- 

ables y , v ≡ ˙ y : ⎧ ⎨ 

⎩ 

˙ y = v , 
ε ̇ v = y (mg − 1) + v (εm − g) 

+ 

my − v 
a (v − my ) 2 + b 

. 

(5) 
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