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1. Introduction 

Riemann theta function solutions describe the quasi-periodic 

behavior of nonlinear phenomenon or characteristic for the inte- 

grability of soliton equations. Moreover they can be used to find 

multi-soliton solutions, elliptic function solutions and others [1–3] . 

Over the past four decades, there have been fairly mature tech- 

niques to construct Riemann theta function solutions or quasi- 

periodic solutions of soliton equation associated with 2 × 2 ma- 

trix spectral problems, such as the KdV, the nonlinear Schrödinger, 

the sine-Gordon, the Toda equations and so on [4–9,28–34] . How- 

ever, when our sight turns to the 3 × 3 spectral problems, their 

complexity considerably increases because of concerning the the- 

ory of trigonal curves [10–19] rather than the hyperelliptic cases 

for the 2 × 2 spectral problems. In [1,13–18,35,36] , certain algebro- 

geometric solutions of the Boussinesq equation related to a third- 

order differential operator were found as special solutions of the 

Kadomtsev–Petviashvili equation or by the reduction theory of Rie- 

mann theta functions. In [20] , Dickson et al. proposed an unified 

framework, which yields all quasi-periodic solutions of the en- 

tire Boussinesq hierarchy. In [21–24] , Geng et al. further devel- 

oped the method to deal with soliton equations associated with 

3 × 3 matrix spectral problems, such as the modified Boussinesq, 

the Kaup–Kupershmidt, the coupled mKdV hierarchies, and oth- 

ers. The present paper can be viewed as the development of these 

approaches in the discrete case, which is important because it is 

quite scarce that the literature devoted to study Riemann theta 
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function solutions of discrete soliton equations associated with 

3 × 3 matrix spectral problems. 

The main aim of the present paper is to derive the discrete in- 

tegrable hierarchy associated with a 3 × 3 matrix spectral prob- 

lem and to construct its Riemann theta function solutions with the 

aid of the theory of trigonal curves [10–12,19] . The first nontrivial 

member in the hierarchy is the discrete 2-potential system 

u n,t = u n +2 (1 − u n +1 v n +1 )(1 − u n v n ) , 
v n,t = −v n −2 (1 − u n −1 v n −1 )(1 − u n v n ) . 

(1.1) 

This paper is organized as follows. In Section 2 , we introduce a dis- 

crete 3 × 3 matrix spectral problem with two potentials and derive 

the discrete integrable hierarchy based on the Lenard recursion 

equations and zero-curvature equation. In Section 3 , we introduce 

the Baker–Akhiezer function, the trigonal curve, and the corre- 

sponding three-sheeted Riemann surface with the help of the char- 

acteristic polynomial of Lax matrix for this hierarchy, from which 

the meromorphic functions on the Riemann surface are given. In 

Section 4 , we study the essential properties of the meromorphic 

functions φ2 , φ3 and the Baker–Akhiezer function ψ 1 , and their 

asymptotic behavior. The last section is devoted to construct the 

Riemann theta function solutions of the discrete integrable hierar- 

chy by employing three kinds of Abelian differentials. 

2. The discrete integrable hierarchy 

Throughout this paper we suppose the following hypothe- 

sis. Assume that u and v satisfies u v � = 0 , u (·, t) , v (·, t) ∈ C 

Z , t ∈ 

R , u (n, ·) , v (n, ·) ∈ C 1 (R ) , n ∈ Z , where C 

Z denotes the set of all 

complex-valued sequences indexed by Z . 
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Let us define the shift operators E , E −1 and difference operator 

� by 

E f (n ) = f (n + 1) , E −1 f (n ) = f (n − 1) , � f (n ) = (E − 1) f (n ) , n ∈ Z . 

We usually write f (n ) = f, E ±1 = E ±, f (n ± 1) = f ±(n ) , f (n + 

k ) = E k f, k ∈ Z . Consider the discrete 3 × 3 matrix spectral 

problem 

Eψ = Uψ, ψ = 

( 

ψ 1 

ψ 2 

ψ 3 

) 

, U = 

( 

0 λ 0 

1 0 u 

v 0 1 

) 

, (2.1) 

where u and v are two potentials, and λ is a constant spectral pa- 

rameter. We first introduce the sequences ˆ g j , ̌g j recursively by 

K ̂

 g j = J ̂  g j+1 , ˆ g j = ( ̂  a j , ̂  b j , ̂  c j , ˆ d j , ̂  e j ) 
T , j ≥ 0 , (2.2) 

K ̌g j = J ̌g j+1 , ǧ j = ( ̌a j , ̌b j , ̌c j , ď j , ̌e j ) 
T , j ≥ 0 , (2.3) 

with the conditions ˆ g j | (u, v )=0 = ǧ j | (u, v )=0 = 0 , j ≥ 1 , and starting 

points 

ˆ g 0 = 

⎛ ⎜ ⎜ ⎝ 

−u v −
u 

v −
u v −−(u 

−v − − 1) 
−1 

⎞ ⎟ ⎟ ⎠ 

, ǧ 0 = 

⎛ ⎜ ⎜ ⎝ 

1 

0 

0 

−(E + 1) −1 u v −
0 

⎞ ⎟ ⎟ ⎠ 

, (2.4) 

where (E + 1) −1 (E + 1) = (E + 1)(E + 1) −1 = 1 , the initial condi- 

tions mean to identify constants of summation as zero, and the 

two difference operators K and J are defined as 

K = 

⎛ ⎜ ⎜ ⎝ 

EuE E 2 0 uE 2 0 

−E −1 v 0 −E −1 −v 0 

E 2 − 1 Ev E −u 0 0 

0 −v uE 0 � 

v E uE − uE −1 v v E 2 −uE −1 E 2 − 1 0 

⎞ ⎟ ⎟ ⎠ 

, 

J = 

⎛ ⎜ ⎜ ⎝ 

0 1 0 0 u 

0 0 −E 0 −v E 
E 2 − 1 Ev E −u 0 0 

0 −v uE 0 � 

v E uE − uE −1 v v E 2 −uE −1 E 2 − 1 0 

⎞ ⎟ ⎟ ⎠ 

. 

Then ˆ g j and ǧ j are uniquely determined by the recursion 

Eqs. (2.2) and (2.3) , respectively, up to a term in ker J n , which is 

always assumed to be zero. For example, 

ˆ g 1 = 

⎛ ⎜ ⎜ ⎜ ⎝ 

u v − ˆ e 1 − (E −2 + 1) u 

++ v −(1 − u v )(1 − u 

+ v + ) 
−u ̂

 e 1 + u 

++ (1 − u 

+ v + )(1 − u v ) 
−v − ˆ e 1 + v −−−(1 − u 

−−v −−)(1 − u 

−v −) 
ˆ d 1 

(E + 1) u v −−(1 − u 

−v −) 

⎞ ⎟ ⎟ ⎟ ⎠ 

, 

ǧ 1 = 

⎛ ⎜ ⎜ ⎜ ⎝ 

(E 2 − 1) −1 (u ̌c 1 − v + b̌ ++ 
1 

) 
u 

+ − u 

2 v − u (E + 1) −1 u 

++ v + 
v −− − u (v −) 2 − v −(E + 1) −1 u 

−v −−

u v −

(E 2 − 1) −1 (u ̌c −
1 

− v ̌b ++ 
1 

+ u v −ǎ −
1 

− u 

+ v ̌a ++ 
1 

) 

⎞ ⎟ ⎟ ⎟ ⎠ 

, 

where 

ˆ d 1 = u 

2 (v −−) 2 (1 − u 

−v −) 2 − (1 + E −2 ) u 

++ v −−

× (1 − u 

−v −)(1 − u v )(1 + u 

+ v + ) 
+(1 + E −1 ) u 

+ u v −v −−(1 − u 

−v −)(1 − u v ) . 

In order to generate a hierarchy of nonlinear evolution equations 

associated with the spectral problem (2.1) , we solve the stationary 

discrete zero-curvature equation 

(EV ) U − UV = 0 , V = 

( 

V 11 λV 12 λV 13 

V 21 V 22 V 23 

V 31 λV 32 λV 33 

) 

, (2.5) 

which is equivalent to 

V 

+ 
12 

+ v V 

+ 
13 

− V 21 = 0 , 

V 

+ 
11 

− V 22 = 0 , 

uV 

+ 
12 

+ V 

+ 
13 

− V 23 = 0 , 

V 

+ 
22 

+ v V 

+ 
23 

− V 11 − uV 31 = 0 , 

V 

+ 
21 

− V 12 − uV 32 = 0 , 

uV 

+ 
22 

+ V 

+ 
23 

− λ(V 13 + uV 33 ) = 0 , 

λ(V 

+ 
32 

+ v V 

+ 
33 

) − v V 11 − V 31 = 0 , 

V 

+ 
31 

− v V 12 − V 32 = 0 , 

uV 

+ 
32 

+ V 

+ 
33 

− v V 13 − V 33 = 0 , 

(2.6) 

where each entry V i j = V i j (a, b, c, d, e ) is a Laurent expansion in λ: 

V 11 = d, V 12 = a, V 13 = b, 

V 21 = a + + v b + , V 22 = d + , V 23 = ua + + b + , 
V 31 = v −a − + c −, V 32 = c, V 33 = e, 

(2.7) 

a = 

∑ 

j≥0 

a j λ
− j , b = 

∑ 

j≥0 

b j λ
− j , c = 

∑ 

j≥0 

c j λ
− j . 

d = 

∑ 

j≥0 

d j λ
− j , e = 

∑ 

j≥0 

e j λ
− j . (2.8) 

A direct calculation shows that (2.6) and (2.7) imply the Lenard 

equation 

KG = λJG, G = (a, b, c, d, e ) T . (2.9) 

Substituting (2.8) into (2.9) and collecting terms with the same 

powers of λ, we arrive at the Lenard recursion relation 

KG j = J G j+1 , J G 0 = 0 , j ≥ 0 , (2.10) 

where G j = (a j , b j , c j , d j , e j ) 
T . Since equation JG 0 = 0 has a solu- 

tion 

G 0 = α0 ̂  g 0 + β0 ̌g 0 , (2.11) 

then G j can be expressed as 

G j = α0 ̂  g j + β0 ̌g j + α1 ̂  g j−1 + β1 ̌g j−1 + . . . + α j ̂  g 0 + β j ̌g 0 , j ≥ 0 , 

(2.12) 

where αj and β j are arbitrary constants. 

Let ψ satisfy the discrete spectral problem (2.1) and an auxil- 

iary problem 

ψ t r = ̃

 V 

(r) ψ, ˜ V 

(r) = 

⎛ ⎝ ̃

 V 

(r) 
11 

λ˜ V 

(r) 
12 

λ˜ V 

(r) 
13 ˜ V 

(r) 
21 

˜ V 

(r) 
22 

˜ V 

(r) 
23 ˜ V 

(r) 
31 

λ˜ V 

(r) 
32 

λ˜ V 

(r) 
33 

⎞ ⎠ , (2.13) 

where each entry ̃  V (r) 
i j 

= V i j ( ̃  a (r) , ̃  b (r) , ̃  c (r) , ˜ d (r) , ̃  e (r) ) , 

˜ a (r) = 

r ∑ 

j=0 

˜ a j λ
r− j , ˜ b (r) = 

r ∑ 

j=0 

˜ b j λ
r− j , ˜ c (r) = 

r ∑ 

j=0 

˜ c j λ
r− j , 

˜ d (r) = 

r ∑ 

j=0 

˜ d j λ
r− j , ˜ e (r) = 

r ∑ 

j=0 

˜ e j λ
r− j , 

(2.14) 

with 

˜ G j = ( ̃  a j , ̃  b j , ̃  c j , ˜ d j , ̃  e j ) 
T determined by ˜ G j = ˜ α0 ̂  g j + ˜ α1 ̂  g j−1 + . . . + ˜ α j ̂  g 0 , j ≥ 0 , (2.15) 

and the constants { ̃  α j } and { αj } are independent of each other. 

Then the compatibility condition of (2.1) and (2.13) yields the 

discrete zero-curvature equation, U t r = (E ̃  V (r) ) U − U ̃

 V (r) , which is 

equivalent to the discrete integrable hierarchy 

(u t r , v t r ) T = X r , r ≥ 0 , (2.16) 

with the vector fields 

X j = P 

(
K n ̃

 G j 

)
= P 

(
J n ̃  G j+1 

)
, j ≥ 0 , (2.17) 
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