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a b s t r a c t 

We develop a chaos expansion for a subordinated Lévy process. This expansion is expressed in terms of 

Itô’s multiple integral expansion. Considering the jumps occurring due to an underlying process and a 

subordinator, a mixed chaotic representation is proposed. This representation provides the definition of 

the Malliavin derivative, which is characterized by increment quotients. Moreover, we introduce a new 

Clark–Ocone expansion formula for the subordinated Lévy process and provide applications for risk-free 

hedging in a designed model. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Lévy process, introduced by Paul Lévy, played a central role 

in the study of stochastic processes in early 1900s, because the 

Lévy process constitutes a broad class of probabilistic processes 

that can be continuous, sometimes discontinuous, and purely dis- 

continuous. This extremely robust class of processes exhibits many 

interesting phenomena in the theories of stochastic and potential 

analysis. In physics, Lévy processes are used to study turbulence, 

laser cooling, and quantum field theory. Engineers use them in net- 

work, queue, and dam research. In mathematical finance, Lévy pro- 

cesses are becoming extremely useful because they can be used to 

explain the observed reality of financial markets in a more accurate 

way than the Brownian motion based model. Many practitioners 

have used Lévy processes for modeling asset prices because asset 

price processes have jumps or spikes in the “real world” environ- 

ment. A comprehensive overview of various applications of Lévy 

processes can be found in studies conducted by Kyprianou [10] , 

Prabhu [20] , and Barndorff-Nielsen et al. [2] . 

In fact, Lévy processes are a family of stochastic processes, 

and they have many types: linear Brownian motions, Poisson pro- 

cesses, compound Poisson processes, subordinators, stable pro- 

cesses, Gamma processes, and Inverse Gaussian processes. 

This paper focuses on subordinators, which transform a 

stochastic process into a new stochastic process. Subordination is 
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applicable to Lévy processes that are used as a stochastic time 

change, which, by itself, is an almost surely increasing Lévy pro- 

cess. The new process is considered subordinate to the original 

one, and the economic interpretation of the time change is based 

on the idea that “business time” (subordinator) may run faster 

than “calendar time” (physical time) during some periods. Hence, 

subordinators can only be an approximation of the real behavior 

of asset prices. The subordination of Lévy processes has many im- 

portant applications. In mathematical finance, it is a time change 

that models the flow of information and measures the trade vol- 

ume time as opposed to real time. There exists a study wherein a 

subordinated Lévy process was applied to commodities [9] . 

We emphasize that the subordinated Lévy process plays a cru- 

cial role in fluctuation theory of general Lévy processes as the re- 

newal processes are a key in random-walk theory. From the mo- 

ment when stock trading occurs, we observe a sharp rise and de- 

cline in asset prices. In fact, the graph of the stock price appears to 

show a continuous probability process, but it can be also be per- 

ceived as a series of countless jumps that represent buying and 

selling. In a very short moment of trading, one tick (the smallest 

price fluctuation unit) shows that the fluctuating index represents 

rises of the buy-order (bid price) and downs of the sell-order (ask 

price), respectively. Therefore, the bid-ask price at each moment 

of the transaction can be explained in terms of the stock trading 

process. Thus, subordinated Lévy processes are more likely to ex- 

plain the minimum price fluctuations and uncertainties in a mar- 

ket economy during the financial transaction process. 

Malliavin calculus was first introduced by Paul Malliavin [14] as 

an infinite dimensional integration by parts that is adapted for 
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Lévy processes by Nunno et al. [7] , Nualart [16] and Solé [22] , 

mainly because it is used to prove the smoothness of stochastic 

differential equations for solutions’ density. 

In probability theory and related fields, Malliavin calculus is 

a set of mathematical techniques and notions; this set extends 

the field of calculus of variations from deterministic functions to 

stochastic processes. In particular, the computation of random vari- 

able derivatives becomes possible. The calculus allows for the inte- 

gration by parts with random variables, and this operation is used 

in mathematical finance to compute the sensitivities of financial 

derivatives. Malliavin calculus in Brownian motion realizes this in 

two ways that are equivalent: one as a weak derivative in canoni- 

cal space and the other through Wiener chaos. However, Lévy pro- 

cesses generally do not have the chaotic representation property 

used in the Brownian motions, Poisson processes, or so-called nor- 

mal martingales [15] . Previous work by Nualart and Schoutens [17] , 

which included a type of chaotic representation property for Lévy 

processes, has enabled us to define a Malliavin derivative using the 

chaotic approach. It is necessary to introduce a two-parameter ran- 

dom measure associated with the Lévy process, and the represen- 

tation of a functional derivative is formulated using multiple inte- 

grals with respect to this random measure. Additionally, we con- 

sider the multiple integral chaotic representation of a Lévy process 

initially suggested by Itô [8] and the symmetric L 2 base Martingale 

representation under the spirit of Itô [8] considered by Løkka [13] . 

The Malliavin derivative of a random variable f in L 2 is defined 

by expanding it first in terms of Gaussian random variables that 

are parametrized by Hilbert space elements and by the expansions 

of formal differentiation. The Skorohod integral is an adjoint op- 

eration to this Malliavin derivative. The stochastic calculus tech- 

niques of variations on the Wiener space enabled the development 

a stochastic calculus for the Skorohod integral [18] , which extends 

the classical Itô calculus introduced in the 1940s, most properties 

of the Itô stochastic integral. In addition, the Clark–Ocone formula 

is an explicit stochastic integral representation for random vari- 

ables in terms of Malliavin derivatives that are crucial when ap- 

plied to mathematical finance studied by David León [12] . It is 

worth mentioning that most aforementioned studies dealt with 

pure jump Lévy processes or combinations of the Brownian motion 

and Poisson processes. The general Lévy processes, which satisfy 

certain conditions, were considered for a normal martingale case 

[1] and [15] . In fact, Solé et al. [22] studied the characteristics of 

canonical Malliavin derivatives suggested by Løkka [13] in terms of 

a Poisson random measures. Following the argument of Solé et al. 

[22] , we also characterize Malliavin derivatives using the increment 

quotient. 

The main contributions of this paper are the derivation of the 

chaos representation property, Malliavin derivative, Skorohod in- 

tegral, and Clark-Ocone formula of subordinated Lévy processes. 

Moreover, we provide applications for risk-free hedging using a de- 

rived Clark–Ocone formula in a subordinated Lévy process. 

We introduce refined definitions for the Malliavin derivatives of 

a subordinated Lévy process with respect to the Brownian motion, 

pure jumps of the original process, and pure jumps of the subor- 

dinator. We conventionally obtain the integration by parts formula 

and the Skorohod integral with the chaos expansions for the sub- 

ordinated Lévy process. We derive the Clark-Ocone formula, which 

also follows from the definition of Malliavin derivatives and ap- 

proximations of the subordinated Lévy process. Unfortunately, the 

subordinated Lévy processes correspond to incomplete models. A 

perfect hedge cannot be obtained, and there is always a residual 

risk that cannot be hedged; however, but risk-free hedging is pos- 

sible when a derived Clark–Ocone formula is used in a subordi- 

nated Lévy process. 

The remainder of this paper is organized as follows. In 

Section 2 , we introduce subordination, the Lévy–Khintchine for- 

mula, and relevant mathematical preliminaries. In Section 3 , rep- 

resentations are derived by multiple integrals that reflect jumps 

in the underlying processes and subordinators while also proving 

their orthogonal decomposition of the L 2 space. In Section 4 , we 

calculate new types of Malliavin derivatives, while in Section 5 , we 

derive the Clark–Ocone formula for the subordinated Lévy process. 

Finally, in Section 6 , we calculate risk-free hedging to an applica- 

tion available in finance. 

2. Subordination of Lévy process 

This section reviews several basic concepts related to Lévy pro- 

cess and subordination (refer to Bertoin [3] and Sato [21] ). 

A stochastic process { X t : t ≥ 0} on R is said to be a Lévy Process 

in a complete probability space (�, F , P ) if it satisfies the follow- 

ing properties: 

• Independence of increments : For any 0 ≤ t 1 < t 2 < . . . < ∞ , 

random variables X t 1 − X t 0 , X t 2 − X t 1 , · · · , X t n − X t n −1 
are indepen- 

dent. 

• Stationary increments : The distribution of X s + t − X t dose not 

depend on s . 

• Continuity in probability : For any ε > 0 and t ≥ 0 it holds that 

lim s → 0 P (| X t+ s − X t | > ε) = 0 . If X t is a Lévy process then t �→ X t is 

C ̀a dl ̀a c that almost surely right-continuous with left limits. 

Let X t be a Lévy process and denote by 

X t− = lim 

s → t,s<t 
X s , t > 0 , 

the left limit process and by �X t = X t − X t− the jump size at 

time t. 

The distribution of a Lévy process is characterized by its char- 

acteristic function of all infinitely divisible distributions, which is 

given by the Lévy–Khintchine formula. If { X t : t ≥ 0} is a Lévy pro- 

cess, then its characteristic function of the form 

E [ e iξX t ] = exp(t�1 (ξ )) , 

where e �1 (ξ ) is the characteristic function of X 1 . The function 

�1 (ξ ) = log( ̂  μ(ξ )) is called the characteristic exponent. If we set 

μt for probability measure of the Lévy process X t and μ = μ1 , then 

the Lévy–Khintchine formula of characteristic function holds: 

ˆ μ(ξ ) = exp 

(
−1 

2 

A 1 | ξ | 2 + ib 1 ξ + 

∫ 
R 

(e ixξ − 1 − ixξ1 | x | < 1 ) ν1 (dx ) 
)
, 

ξ ∈ R , (2.1) 

where A 1 ≥ 0 is a Gaussian variance, b 1 ∈ R is a drift term, 1 B ( x ) is 

the indicator function of a set B , and ν1 ∈ R is a measure on R \{ 0 } 
with 

∫ 
R 
(1 ∧ x 2 ) ν(dx ) < ∞ . The measure ν1 is called the Lévy mea- 

sure of X t . The Lévy process comprises three independent compo- 

nents : a Brownian motion, a drift term, and a superposition of in- 

dependent Poisson processes with different jump sizes. These three 

components and the Lévy - Khintchine formula are determined by 

the Lévy–Khintchine triplet ( A 1 , b 1 , ν1 ). 

The process X t admits a Lévy-Itô decomposition 

X t = b 1 t + 

√ 

A 1 W t + 

∫ 
(0 ,t] ×{| x | > 1 } 

xdN(s, x ) 

+ lim 

ε→ 0 

∫ 
(0 ,t] ×{ ε< | x |≤1 } 

xd ̃  N (s, x ) , (2.2) 

where { W t : t ≥ 0} is the standard Brownian motion. We let 

B ((0 , ∞ ) × R \ { 0 } ) be a Borel σ -algebra of (0 , ∞ ) × R \ { 0 } . 
N(B ) = 	 { t : (t, �X t ) ∈ B } , B ∈ B ((0 , ∞ ) × R \ { 0 } ) , (2.3) 

is the jump measure of the process, where �X t = X t − X t−, 	 A de- 

notes the cardinal of a set A, and the compensated Poisson random 

measure is 

d ̃  N (t, x ) = dN(t, x ) − d td ν(x ) . (2.4) 
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