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a b s t r a c t 

We generalize here the communicability metric on graphs/networks to include a tuning parameter that 

accounts for the level of edge “deterioration”. This generalized metric covers a wide range of realistic 

scenarios in networks, which includes shortest-path metric as a particular case. We study the commu- 

nicability metric on an urban street network, and show that communicability shortest paths in this city 

accounts for most of the traffic between series of origin-destination points. Particularly, we show that 

the traffic flow and congestion in the shortest communicability paths is much bigger than in the corre- 

sponding shortest paths. This indicates that under certain conditions drivers in a city avoid long paths but 

also avoid the most interconnected street intersections, which typically may be the most congested ones. 

We develop here a diffusion-like model on the network based on a particle-hopping scheme inspired 

by “tight-binding” quantum mechanical Hamiltonian, which offers a solid explanation on why traffic is 

diverted through the shortest communicability routes instead of the shortest-paths. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The study of complex networks, which represent the topological 

framework of complex systems, has found a wide variety of appli- 

cations in sciences, engineering and the analysis of social systems 

[1,2] . From a mathematical point of view a complex network is a 

graph with nontrivial structure, typically having a large number of 

nodes and being sparse [1–3] . It can be argued that the main rea- 

son for the existence of such networked structures in complex sys- 

tems is to transmit “items” from one part of the system to another 

[4] . Such “items” may refer to electrons (molecular networks), wa- 

ter (brain networks), gossip (social networks), mass/energy (eco- 

logical networks), or any other thing that complex systems need 

for their functioning [1] . In such context of trading items among 

nodes of a complex system it is vital to understand the metric 

properties of the underlying system, i.e., the network. By far, the 

most studied metric in graphs [5] and networks [1–4] is the so- 

called shortest path distance. The shortest path between two nodes 

in a network is the shortest–in terms of the number of edges–

among all the sequences of different nodes and edges connecting 

the origin and the destination. The shortest path in an undirected 
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graph is a proper metric in the sense that it fulfills the following 

axioms [6] : (i) d ( x, y ) ≥ 0 ( nonnegativity ); (ii) d ( x, y ) = 0 if and only 

if x = y ( identity of indiscernibles ); (iii) d ( x, y ) = d ( y, x ) ( symmetry ); 

(iv) d ( x, y ) ≤ d ( x, z ) + d ( z, y ) ( triangle inequality ). 

Another metric in graphs is the so-called resistance distance [7–

9] , which is defined on the basis of the Moore–Penrose pseudo- 

inverse of the Laplacian matrix. That is, the resistance distance be- 

tween the nodes i and j in a graph is defined as: Ωi j = L 
† 
ii 

+ L 
† 
j j 

−
2 L 

† 
i j 
, where L 

† 
ii 

is the diagonal entry of the pseudo-inverse of the 

Laplacian matrix corresponding to the node i . The Laplacian ma- 

trix is defined as the difference between a diagonal matrix of node 

degree K and the adjacency matrix of the graph A , i.e., L = K − A . 

The term resistance distance comes from the fact that if we place a 

fixed electrical resistor on each edge of a network and we connect 

a battery across the nodes, then the effective resistance between 

them obtained by using the Kirchhoff and Ohm laws is given by 

Ωi j . In graph-theoretic terms the resistance distance is a weighted 

sum of all paths between the origin and destination nodes, which 

means that it is identical to the shortest path metric when the 

graph is acyclic, i.e., in trees. The resistance distance is related to 

the commuting time C ( i, j ) of a random walker between the nodes 

i and j on the graph by: C ( i, j ) = 2 mΩi j , where m is the number 

of edges in the graph [10–12] . Thus, the commuting time is also a 

proper metric in the graph [6] . 
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Both shortest path and resistance distance are intrinsic met- 

rics of graphs and networks. That is, they “emerge” from the 

proper structure of the graphs without imposing any particular 

embedding to them. In another category we can find those met- 

rics which are produced by an imposed embedding of the graph 

into a certain geometry. The most studied of these extrinsic met- 

rics is the one arising from the embedding of a network in a hy- 

perbolic space [13] . In this work we deal only with intrinsic (nat- 

ural) metrics of graphs. In this category of intrinsic metrics we 

can also find Chebotarev–Shamis metric [14] , which is defined as: 

d α
i j 

= 

1 

2 

(
q α

ii 
+ q α

j j 
− 2 q α

i j 

)
, where q α

ii 
is the corresponding entry of 

the matrix Q = ( I + αL ) −1 . As proved by Chebotarev and Shamis 

their metric is the resistance metric of a given weighted multi- 

graph [14,15] . Indeed, this metric becomes the resistance metric 

as α → ∞ . A different metric is the so-called communicability dis- 

tance [16,17] , which is defined on the basis of the communicability 

function of a graph [18–20] . It is defined as: ξ 2 
i j 

= G ii + G j j − 2 G i j , 

where the communicability term G ij is the corresponding entry of 

the matrix G = exp ( A ) . This metric accounts for the “quality” of 

the communication routes between two nodes in a network, where 

the self-communicability terms G ii and G jj account for the number 

of routes in which items can get lost by returning to its originator 

[21] and G ij accounts for the routes that connect the origin with 

the destination [18] . Here by routes we mean a walk of a given 

length as explained in the next section of this work. This metric 

induces an embedding of a graph in a Euclidean n -sphere [22,23] . 

That is, the communicability distance matrix is circum-Euclidean. 

Although there is great popularity of the shortest path met- 

ric in the study of graphs and metrics, there is neither theoret- 

ical nor empirical support that it is the preferred way in which 

items are delivered in networks. In particular, in cases where the 

global topology of the network is not known, it is difficult to be- 

lieve that the items can navigate in a way which mainly use the 

shortest path. In addition, in many real-world complex networks, 

most of the time, items travel across the network in a diffusion- 

like way, which does not involve the shortest path as the main 

route of delivery. Thinking about random walks, and consequently 

in terms of resistance distances, is an alternative method which 

has more foundations in the basis of the diffusive nature of net- 

work processes. However, as von Luxburg [24] has proved for large 

graphs, the commute distance converges to an expression that does 

not take into account the structure of the graph at all. As a con- 

sequence, it is “completely meaningless as a distance function on 

the graph ” [24] , which dramatically limits the use of resistance- 

like distances for large graphs, which are the type most frequently 

studied in network theory. Consequently, we focus our attention 

here in the communicability metric, which we generalize to in- 

clude a parameter that allows us to recover the shortest path met- 

ric as a particular case. 

Our main goal in this work is to generalize the communicability 

metric to include a tuning parameter that allows us to model dif- 

ferent realistic scenarios for the flow of items on networks. In par- 

ticular, we prove analytically that metrics of this type can be ob- 

tained from a few different matrix functions of the adjacency ma- 

trix of a network. However, the communicability metric based on 

the exponential of the adjacency matrix displays a large number 

of advantages over the others. In particular, it can cover a wider 

range of realistic scenarios in networks, while the other metrics 

are very close to the shortest path. Finally, we consider the com- 

municability metric on both random spatial networks and an ur- 

ban street network. In the last case, we show that communicabil- 

ity shortest paths in this city account for most of the traffic be- 

tween sets of origin-destination points. Particularly, we show that 

for certain values of the tuning parameter, the traffic flow and 

congestion in the shortest communicability paths is much bigger 

than in the corresponding shortest path. This indicates that under 

certain conditions–analyzed in this paper–drivers in a city travel 

through paths which compromise of keeping the path short, how- 

ever avoiding the most interconnected street intersections, which 

typically may be the most congested ones. We show here that 

these paths are well described by a diffusion-like process on the 

network based on a particle-hopping scheme, which is developed 

here for the first time. 

2. Preliminaries 

Here we present the definitions, notations, and properties as- 

sociated with graphs to make this work self-contained. We con- 

sider only simple, undirected graphs � = (V, E) with n nodes (ver- 

tices) and m edges. The notation used in the paper is the stan- 

dard in graph theory and the reader is referred to the monograph 

[1] for details. An important concept to be used across this pa- 

per is the one of walks. A walk of length k in � is a set of nodes 

i 1 , i 2 , . . . , i k , i k +1 such that for all 1 ≤ l ≤ k , (i l , i l+1 ) ∈ E. A closed 

walk is a walk for which i 1 = i k +1 . A path is a walk with no re- 

peated nodes/edges. Among all the paths connecting two nodes, 

the one with the shortest length is known as the shortest path be- 

tween the two nodes. The length of the shortest path is named 

here as the (topological) shortest path distance between the corre- 

sponding nodes. A graph is connected if there is a path connecting 

every pair of nodes. 

Let A be the adjacency matrix of the graph �. For simple graphs 

A is symmetric and thus its eigenvalues are real, which we label 

here in non-increasing order: λ1 ≥ λ2 ≥ . . . ≥ λn . We will consider 

the spectral decomposition of A : = V �V T , where � is a diago- 

nal matrix containing the eigenvalues of A and V = [ 
−→ 

ψ 1 , . . . , 
−→ 

ψ n ] 

is orthogonal, where 
−→ 

ψ i is an eigenvector associated with λi . As 

the graphs considered here are connected, A is irreducible and 

from the Perron–Frobenius theorem we can deduce that λ1 > λ2 

and that the leading eigenvector 
−→ 

ψ 1 , can be chosen such that its 

components ψ 1 (p) are positive for all p ∈ V . It is known that ( A 

k ) pq 

counts the number of walks of length k between p and q . 

2.1. Communicability function and external stress on networks 

An important quantity for studying communication processes in 

networks has been defined as the communicability function [18] . It 

is defined as follows. Let p and q be two nodes of �. The commu- 

nicability function between these two nodes is defined as 

G pq = 

∞ ∑ 

k =0 

(
A 

k 
)

pq 

k ! 
= ( exp ( A ) ) pq = 

n ∑ 

j=1 

e λ j ψ j (p) ψ j (q ) . 

It counts the total number of walks starting at node p and end- 

ing at node q , weighted in decreasing order of their length by a 

factor of 1 
k ! 

; therefore it is considering shorter walks as more in- 

fluential than longer ones. The matrix exponential is an example 

of a general class of matrix functions. In general we can consider 

any matrix function that can be expressed as a weighted sum of 

all the different powers of the adjacency matrix of the graph. That 

is, 

( f ( A ) ) pq = 

∞ ∑ 

k =0 

c k 
(
A 

k 
)

pq 
, (2.1) 

where c k are coefficients giving more weight to the shorter than to 

the longer walks, and making the series converge. Some examples 

of these functions are given in Table 1 . 

Remark 1. Functions like cosh ( A ), sinh ( A ), cos ( A ), sin ( A ) are not 

considered as “complete” communicability functions as they do not 

account for all walks in the graph, i.e., they account only for even- 
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