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a b s t r a c t 

We study families of anisotropic solitary semivortices (SVs) in spinor dipolar Bose-Einstein condensates 

(BECs), with two localized components linearly mixed by the two-dimensional anisotropic spin-orbit (SO) 

coupling of the Rashba type. The intrinsic nonlinearity of this system represented by the anisotropic 

dipole-dipole interactions (DDIs) between atomic magnetic moments is aligned parallel to the system’s 

plane by an external magnetic field. The affects of the anisotropic SO-coupling and the interplay between 

SO-coupling and DDI to the solitons of the SV type are systematically studied through the paper. For the 

SVs, we demonstrate that the shape of the vortex component, which is vertical or horizontal anisotropic 

solitary vortices (ASV) with respect to the in-plane polarization of the atomic dipole moments in the un- 

derlying BEC, may be effectively controlled by the anisotropy degree, λx / λy , of the SO-coupling. A novel 

type of ASV, elliptical ring shaped vortices, is found at the transition point between the horizontal and 

vertical shapes. Such ASV contains the largest value of the average angular momentum. Influences of the 

anisotropic SO-coupling to the mobility of the SV are studied by the direct simulation to the kicked soli- 

ton on the x and y directions. Trajectories of the kicked soliton show a strong anisotropy which depends 

on the anisotropy degree of the SO-coupling. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Spin-orbit (SO) coupling is a well-known effect, which has al- 

ready been extensively studied in many branches of physics. It 

can give rise to fine structure splitting, which plays an important 

role in atomic physics. It is also one of the major effects to con- 

trol the electron transport in a semiconductor in condensed mat- 

ter physics. Recently it was found that SO-coupling can cause novel 

physics such as anomalous quantum Hall effects [1] , topological 

insulators [2] , and topological superconductors [3] , etc. In recent 

years, the study of the effect induced by the SO-coupling on quan- 

tum gas has become one of the hottest topics since the synthetic 

SO-coupling was generated in ultra cold atoms. Lots of theoreti- 

cal and experimental progress have been made in this direction, 

which are summarized in Reviews [4,5] . Recent experiments have 

successfully realized SO-coupling in two-dimensional (2D) space 

[6–8] . Because the cold atom systems can reach a strongly inter- 

acting quantum gas by using the Feshbach resonance [9,10] , the 
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interplay between the SO coupling and the collisional nonlinearity 

of the BEC gives rise to diverse nonlinear phenomena such as one- 

dimensional (1D) solitons [11–20] , two-dimension (2D) gap soli- 

tons [21] , stripe phases [22,23] , etc. In three-dimensional (3D) set- 

tings, SO-coupling also plays an important role in the formation of 

complex topological modes in BEC [24,25] , such as skyrmions [26–

28] . 

Recently, an unexpected result was revealed by the analysis 

of a two-component (spinor) self-attractive BEC with linear SO- 

coupling between the components which predicts two types of 

completely stable 2D solitons, namely, semi-vortices (SVs) and 

mixed modes (MMs) [29–37] . The semi-vortices are built of one 

zero-vorticity and one vortical components, while the MMs mix 

zero and non zero vorticities in both components (which are 

built as equal-weight superpositions of SVs with topological con- 

tent (0 , −1) and (0 , +1) in the two components). These findings 

contradict the common belief that any system with pure cubic 

self-focusing nonlinearity cannot support stable solitons in free 

2D space. In 3D scheme, it was traditionally believed that no 

metastable localized mode can exist in free 3D space with cubic 

attractive nonlinearity, however, it has been demonstrated that the 
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interplay between the linear Wely-type SO-coupling and the cu- 

bic attractive interaction gives rise to the same two generic types 

of 3D solitons as in 2D, i.e., SVs and MMs, which are metastable 

states in free space [38] . The SO-coupling like effect was also con- 

sidered in some special optical system to create the spatiotemporal 

solitons [39–41] . 

The interplay between SO-coupling and nonlocal nonlinearity 

was also studied by means of dipolar BECs. It was reported that 

stripe soliton and anisotropic vortex can be created by the com- 

bination action of the anisotropic dipole-dipole interactions (DDIs) 

and SO-coupling [42,43] , and 2D gap solitons can be created with 

Zeeman splitting [44,45] . Recently, it has been demonstrated that 

the pattern and the mass of the anisotropic vortex soliton can 

also be controlled by the Zeeman splitting [47] and the mixture of 

Rashba and Dresselhaur type SO couplings [46] . In above 2D mod- 

els, the SO-coupling strength in the x and y directions are equal. 

For example, a typical Rashba-type SO coupling can be described 

by (λx ̂
 k x ̂  σy + λy ̂

 k y ̂  σx ) , where the coupling strengths are always be 

taken as λx = λy . However, recent experiment has demonstrated 

that the strength λx, y can be tuned to be unequal with each other 

[7] , which results in an anisotropic 2D SO-coupling. How such an 

anisotropic 2D SO-coupling affects the soliton has not yet been 

considered. 

In this work, we consider the dynamics of the dipolar matter- 

wave soliton in 2D BECs with anisotropic Rashba SO-coupling (i.e., 

λx � = λy ) to study how the anisotropic SO-coupling affects the SVs. 

Because the dipolar BECs can feature an anisotropic long-range in- 

teraction by means of the DDIs, the interplay between these two 

kinds of anisotropy, DDIs and SO-coupling, is also considered in 

this work. The rest of the paper is structured as follows. The model 

is introduced in Section 2 . Basic numerical results for the forma- 

tion and dynamics of SVs against the anisotropic SO-coupling are 

reported in Section 3 and 4 . The paper is concluded by Section V. 

2. The model 

Under the mean-field approximation, the evolution of the wave 

functions of the spinor dipolar BECs, ψ = (ψ + , ψ −) , is governed by 

the coupled Gross–Pitaevskii equations: 

i∂ t ψ + = −1 

2 

∇ 

2 ψ + + 

ˆ D 

[ −] ψ − + ψ + 
∫ 

d x ′ d y ′ R (x − x ′ , y − y ′ ) 

(| ψ + (x ′ , y ′ ) | 2 + | ψ −(x ′ , y ′ ) | 2 ) , 
i∂ t ψ − = −1 

2 

∇ 

2 ψ − − ˆ D 

[+] ψ + + ψ −
∫ 

d x ′ d y ′ R (x − x ′ , y − y ′ ) 

(| ψ + (x ′ , y ′ ) | 2 + | ψ −(x ′ , y ′ ) | 2 ) . (1) 

which is written in the normalized form with the anisotropic 

Rashba SO-coupling term 

ˆ D 

[ ±] = λx ∂ x ± iλy ∂ y , (2) 

where λx, y ∈ [0, 1] are the strength of SO-coupling in x and y di- 

rections, respectively. Here, we fix the maxima of the strengths to 

be 1 by means of rescaling. The DDI’s kernel reads 

R (x − x ′ , y − y ′ ) = 

1 − 3 cos 2 θ

[ ε2 + (x − x ′ ) 2 + (y − y ′ ) 2 ] 3 / 2 
, (3) 

where cutoff ε is determined by the confinement in the trans- 

verse (third) dimension [51,52] . So if the dipoles are polarized 

(by an external magnetic field) in the positive x direction in the 

2D ( x, y ) plane, cos 2 θ = (x − x ′ ) 2 / 
[
(x − x ′ ) 2 + (y − y ′ ) 2 

]
, and if the 

dipoles are polarized in the positive y direction, cos 2 θ = (y −
y ′ ) 2 / 

[
(x − x ′ ) 2 + (y − y ′ ) 2 

]
. 

In order to study the interplay between two types of anisotropy 

(i.e. anisotropic DDIs and SOC) clearer, we neglect the contact in- 

teraction from Eq. (1) , which is assumed to be achieved by tun- 

ing Feshbarch resonance [9,10] . Because the collapse of soliton can 

be arrested by the DDIs [4 8,4 9] , collapse of soliton in usual SO- 

coupling system with contact interaction when total norm of the 

soliton exceeds the limit of Townes soliton [29,50] is never ob- 

served in this system. 

Stationary states are look for as the usual form, ψ ±(x, y, t) = 

φ±(x, y ) e −iμt , where φ ± are stationary wave functions, and μ is a 

real chemical potential. A dynamical invariant of the system is the 

total norm, which is proportional to the total number of atoms in 

the binary BECs: 

N = N + + N − = 

∫ 
d xd y (| φ+ | 2 + | φ−| 2 ) . (4) 

It is also relevant to define the relative share of the atoms which 

are kept in the vortex component: 

F − = N −/ ( N + + N −) . (5) 

Here, we select ε = 0 . 5 , which is the same as what had been 

selected in Refs. [21,35,47] . According to the physical estimation in 

Refs. [21,35] , { x, y } = 1–10 μm, and N in the range of 1 to 5 corre- 

sponds to the number of the atoms 10 4 –10 5 . 

The other dynamical invariants are the linear momentum [see 

Eq. (13) below] and the total energy, 

E = E K + E DDI + E SOC , (6) 

where E K , E DDI , and E SOC are the kinetic energy and the interaction 

energy through DDI and SO-coupling, respectively: 

E K = 

1 

2 

∫ 
d xd y 

(|∇ φ+ | 2 + |∇ φ−| 2 ), 
E DDI = 

1 

2 

∫ ∫ 
d xd yd x ′ d y ′ 

(| φ+ (x, y ) | 2 + | φ−(x, y ) | 2 )R (x − x ′ , y − y ′ ) 

(| φ+ (x ′ , y ′ ) | 2 + | φ−(x ′ , y ′ ) | 2 ) , 
E SOC = 

∫ 
d xd y (φ∗

+ ̂  D 

[ −] φ− − φ∗
− ˆ D 

[+] φ+ ) . (7) 

Note that although the anisotropic system does not conserve 

the total orbital angular momentum, the expecting value of the or- 

bital angular momentum operator acts on each component, 

〈 L ±〉 = 

1 

N ±

∫ 
φ∗

± ˆ L φ±d xd y, (8) 

where ˆ L = −i (y∂ x − x∂ y ) is the angular-momentum operator, can 

still be used to characterize the degree of vorticity of the compo- 

nents. 

Bright-soliton modes of the semi-vortex type in various systems 

may be produced by guess input [29] , 

φ0 
+ = A + exp (−α+ r 2 ) , φ0 

− = A −r exp (iθ − α−r 2 ) , (9) 

where A ± and α ± are positive constants. In this guess, φ+ and φ−
are the wave functions of zero-vorticity (fundamental) and vortex 

components, respectively. Starting from this input, SVs can be pro- 

duced by the imaginary-time-integration method [53–55] . Because 

the dipole-dipole interaction can stabilize soliton in 2D, the soliton 

we obtained in this paper are all stable. 

In the following sections, we numerically identify different 

types of soliton by varying 3 control parameters, viz ., the total 

norm of the soliton, as given by Eq. (4) , and the SO-coupling 

strength in the two directions, i.e., λx, y in Eq. (1) . 

3. Semi-vortex solitons 

We firstly consider all the dipoles are directed to the positive 

x -axis. Figs. 1 and 2 display typical examples of SVs by varying 

λx and λy , respectively. The first row of Figs. 1 and 2 show that 

the vortical component φ− forms a vertical and horizontal dipole 

modes at (λx , λy ) = (0 , 1) and (1,0), respectively, that is the SO- 

coupling retreats to a single direction (i.e., 1D version) in y and x , 
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