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The aim of this paper is to study the dendrite-type attractors of an iterated function system formed by 

two injective functions. We consider ( X, d ) a complete metric space and S = ( X , { f 0 , f 1 }) an iterated func- 

tion system (IFS), where f 0 , f 1 : X −→ X are injective functions and A is the attractor of S . Moreover, we 

suppose that f 0 ( A ) ∩ f 1 ( A ) = { a } and { a } = π( 0 m 1 ∞ ) = π( 1 n 0 ∞ ) with m, n ≥ 1, where π is the canoni- 

cal projection on the attractor. We compute the connected components of the sets A \ { π (0 ∞ )}, A \ { π (1 ∞ )}, 

A \ { π( 0 m 1 ∞ ) = π( 1 n 0 ∞ ) } and deduce there are infinitely-many (countably) non-homeomorphic dendrite- 

type attractors of iterated function systems formed by two injective functions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Iterated function systems were conceived in the present form 

by J. Hutchinson in [9] , popularized by M. Barnsley in [1] and 

are one of the most common and general ways to generate 

fractals. Many of the important examples of functions and sets 

with special and unusual properties turn out to be fractal sets or 

functions whose graphs are fractal sets and a great part of them 

are attractors of iterated function systems. There is a current effort 

to extend the classical Hutchinson’s framework to more general 

spaces and infinite iterated function systems or, more generally, 

to multifunction systems and to study them ( [10,11,14,15,17] ). Such 

example can be found in [12] , where the Lipscomb’s space, which 

is an important example in dimension theory, can be obtained 

as an attractor of an infinite iterated function system defined in 

a very general setting. In those settings the attractor can be a 

closed bounded set, in contrast with the classical theory where 

only compact sets are considered. Although the fractal sets are de- 

fined with measure theory, being sets with non-integer Hausdorff

dimension ( [6–8,18,22] ), it turns out that they have interesting 

topological properties ( [3–5] ). The topological properties of fractal 

sets have a great importance in analysis on fractals as we can see 

in ( [5,10,11] ). Generalized iterated function systems can be found 

in ( [13,18–20] ). Topological versions of an iterated function system 

have been studied in ( [2,16,21] ). 

In this article we intend to characterize the dendrites which are 

attractors of iterated function systems composed by two injective 
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functions. For a metric space ( X, d ), we denote by K 

∗(X ) the set of 

nonempty compact subsets of X . 

Definition 1.1. Let ( X, d ) be a metric space. The function h : 

K 

∗(X ) × K 

∗(X ) −→ [0 , + ∞ ) defined by h (A , B ) = max ( d ( A , B ), d ( B, 

A )), where d ( A, B ) = sup 

x ∈ A 
d(x, B ) = sup 

x ∈ A 

(
inf 
y ∈ B 

d(x, y ) 

)
is called the 

Hausdorff-Pompeiu metric . 

Remark 1.1 ( [18] ) . The space (K 

∗(X ) , h ) is complete if ( X, d ) is 

complete, compact if ( X, d ) is compact and separable if ( X, d ) is 

separable. 

Definition 1.2. Let ( X, d ) be a metric space. For a function f : X −→ 

X let us denote by Lip( f ) ∈ [0 , + ∞ ] the Lipschitz constant associ- 

ated to f , which is Lip( f ) = sup 

x,y ∈ X ; x � = y 

d( f (x ) , f (y )) 

d(x, y ) 
. We say that f is 

a Lipschitz function if Lip( f ) < + ∞ and a contraction if Lip ( f ) < 1. 

Definition 1.3. An iterated function system (IFS) on a complete met- 

ric space ( X, d ) consists of a finite family of contractions { f k } k = 1 ,n , 
f k : X −→ X for every k ∈ { 1 , 2 , . . . , n } and it is denoted by S = 

(X, { f k } k = 1 ,n ) . 

Definition 1.4. For an iterated function system S = (X, { f k } k = 1 ,n ) , 
the function F S : K 

∗(X ) −→ K 

∗(X ) defined by F S (B ) = 

n ⋃ 

k =1 

f k (B ) is 

called the fractal operator associated to the iterated function sys- 

tem S . 
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Remark 1.2 ( [1] ) . The function F S is a contraction satisfying 

Lip ( F S ) ≤ max 
k = 1 ,n 

Lip( f k ) . 

Using Banach’s contraction theorem there exists, for an iterated 

function system S = (X, { f k } k = 1 ,n ) , a unique set A ∈ K 

∗(X ) such 

that F S (A ) = A, which is called the attractor of the iterated func- 

tion system S . More precisely we have the following well-known 

result. 

Theorem 1.1 ( [1,8,18] ) . Let ( X, d ) be a complete metric space and S = 

(X, { f k } k = 1 ,n ) an iterated function system with c = max 
k = 1 ,n 

Lip( f k ) < 1 . 

Then there exists a unique set A = A (S) ∈ K 

∗(X ) such that F S (A ) = 

A . Moreover, for any H 0 ∈ K 

∗(X ) the sequence ( H n ) n ≥ 1 defined by 

H n +1 = F S (H n ) is convergent to A. For the speed of the convergence 

we have the following estimate: h (H n , A ) ≤ c n 

1 − c 
h ( H 0 , H 1 ) for every 

n ≥ 1 . 

Now we briefly present the shift space of an iterated function 

system. For more details one can see [11] . We start with some 

set notations: N denotes the set of natural numbers, N 

∗ = N \ { 0 } , 
N 

∗
n = { 1 , 2 , . . . , n } . For two nonempty sets A and B, B A denotes 

the set of functions from A to B . By � = �(B ) we will under- 

stand the set B N 
∗

and by �n = �n (B ) we will understand the set 

B N 
∗
n . The elements of � = �(B ) = B N 

∗
will be written as infinite 

words ω = ω 1 ω 2 . . . ω m 

ω m +1 . . . , where ω m 

∈ B and the elements of 

�n = �n (B ) = B N 
∗
n will be written as finite words ω = ω 1 ω 2 . . . ω n . 

By λ we will understand the empty word. Let us remark that 

�0 ( B ) = { λ} . By �∗ = �∗(B ) we will understand the set of all finite 

words �∗ = �∗(B ) = 

⋃ 

n ≥0 

�n (B ) . 

We denote by | ω| the length of the word ω. An element of 

� = �(B ) is said to have length + ∞ . If ω = ω 1 ω 2 . . . ω m 

ω m +1 . . . 

or if ω = ω 1 ω 2 . . . ω n and n ≥ m , then [ ω] m 

: = ω 1 ω 2 . . . ω m 

. More 

generally, if l < m then [ ω ] l m 

= ω l+1 ω l+2 . . . ω m 

and we have [ ω ] m 

= 

[ ω ] l [ ω ] l m 

for every ω ∈ �n ( B ), where n ≥ m > l ≥ 1. For two words 

α, β ∈ �∗( B ) ∪ �( B ), α≺β means that | α| ≤ | β| and [ β] | α| = α. For 

α ∈ �n ( B ) and β ∈ �m 

( B ) or β ∈ �( B ) by αβ we will understand the 

joining of the words α and β , namely αβ = α1 α2 . . . αn β1 β2 . . . βm 

and respectively αβ = α1 α2 . . . αn β1 β2 . . . βm 

βm +1 . . . . 

On � = �(N 

∗
n ) = (N 

∗
n ) 

N 
∗
, we can consider the metric d s (α, β) = 

∞ ∑ 

k =1 

1 −δ
βk 
αk 

3 k 
, where δy 

x = 

{
1 , if x = y 

0 , if x � = y 
and α = α1 α2 . . . , β = β1 β2 . . . . 

Let ( X, d ) be a complete metric space, S = (X, { f k } k = 1 ,n ) an it- 

erated function system on X and A = A (S) the attractor of the it- 

erated function system S . For ω = ω 1 ω 2 . . . ω m 

∈ �m 

(N 

∗
n ) , f ω de- 

notes f ω 1 ◦ f ω 2 ◦ . . . ◦ f ω m , where f ω m is applied first and H ω de- 

notes f ω ( H ) for a subset H ⊂ X . By H λ we will understand the set H . 

In particular A ω = f ω (A ) . Moreover, we denote by 0 ∞ = 0 0 0 . . . ∈ 

�({ 0 , 1 } ) and 1 ∞ = 111 . . . ∈ �({ 0 , 1 } ) . 
The main results concerning the relation between the attrac- 

tor of an iterated function system and the shift space is contained 

in the following theorem. The function π : � −→ A = A (S) from 

the theorem below is called the canonical projection from the shift 

space onto the attractor of an iterated function system S . 

Theorem 1.2 ( [11] ) . Let ( X, d ) be a complete metric space. If A = 

A (S) is the attractor of an iterated function system S = (X, { f k } k = 1 ,n ) 
with c = max 

k = 1 ,n 
Lip( f k ) < 1 , then: 

(1) For every ω ∈ � = �(N 

∗
n ) we have A [ ω] m +1 

⊂ A [ ω] m and 

d(A [ ω] m ) −→ 0 when m −→ ∞ . More precisely d(A [ ω] m ) ≤ c m d(A ) , 

where d(M) = sup 

x,y ∈ M 

d(x, y ) is the diameter of a set M. 

(2) If a ω is defined by { a ω } = 

⋂ 

m ≥1 

A [ ω] m , then d(e [ ω] m , a ω ) −→ 0 

when m −→ ∞ , where e [ ω] m is the unique fixed point of f [ ω] m . 

(3) A = 

⋃ 

ω∈ �
{ a ω } , A α = 

⋃ 

ω∈ �
{ a αω } for every α ∈ �∗, A = 

⋃ 

ω∈ �m 

A ω 

for every m ∈ N 

∗ and, more general, A α = 

⋃ 

ω∈ �m 

A αω for every α ∈ �∗

and every m ∈ N 

∗. 

(4) The set { e [ ω] m | ω ∈ � and m ∈ N 

∗} is dense in A. 

(5) The function π : � −→ A defined by π(ω) = a ω is continuous 

and surjective. 

2. Main results 

In general the dendrites represent the topological analogue 

of the trees. Characterizations of dendrite-type attractors can be 

found in [3] and [5] . 

Definition 2.1. a) X is arcwise connected if for every x, y ∈ X there 

exists a continuous function ϕ : [0 , 1] −→ X such that ϕ(0) = x and 

ϕ(1) = y . A continuous function ϕ as above is called a path be- 

tween x and y . We say that two continuous and injective func- 

tions ϕ, ψ : [0 , 1] −→ X are equivalent if there exists a function 

u : [0 , 1] −→ [0 , 1] continuous, bijective and increasing such that 

ϕ ◦ u = ψ . A class of equivalence is named a curve . b) If X is com- 

pact, connected and locally connected, then X is called a dendrite if 

for every x, y ∈ X there exists a unique equivalence class of continu- 

ous and injective functions ϕ : [0 , 1] −→ X such that ϕ(0) = x and 

ϕ(1) = y (i.e. there exists a unique injective curve joining x with 

y ). We remark that two equivalent, continuous and injective func- 

tions have the same images. We also consider that the empty set 

is a dendrite. c) Let ( A i ) i ∈ I be a family of nonempty subsets of X . 

Then the graph ( I, G ), where G = { ( i, j ) | i, j ∈ I such that A i ∩ A j � = ∅ 
and i � = j } is called the graph of intersections associated to the family 

( A i ) i ∈ I . d) A graph ( I, G ) is called connected if for every i, j ∈ I there 

exist (i k ) k = 1 ,n ⊂ I such that i 1 = i, i n = j and 

(
i k , i k +1 

)
∈ G for ev- 

ery k ∈ { 1 , 2 , . . . , n − 1 } . A family of vertices (i 1 , . . . , i m 

) is called a 

cycle if 
(
i k , i k +1 

)
∈ G for every k ∈ { 1 , . . . , m } and i k / ∈ { i k +1 , i k +2 } for 

every k ∈ { 1 , . . . , m } , where by i m +1 we understand i 1 and by i m +2 

we understand i 2 . A graph ( I, G ) is called a tree if it is connected 

and has no cycles. 

The following result gives a characterization of dendrites as at- 

tractors of some iterated function systems. 

Theorem 2.1 ( [3] ) . Let ( X, d ) be a complete metric space and S = 

(X, { f k } k = 1 ,n ) an iterated function system with c = max 
k = 1 ,n 

Lip( f k ) < 1 . 

We denote by A = A (S) the attractor of S, by A k the set f k ( A ) for 

every k ∈ { 1 , . . . , n } and by ( ( 1 , . . . , n ) , G ) the graph of intersections 

associated with the family of sets (A k ) k = 1 ,n . We suppose that the fol- 

lowing conditions are true: 

(a) The set A i ∩ A j is totally disconnected for every i, j ∈ 

{ 1 , 2 , . . . , n } different. 

(b) A i ∩ A j ∩ A k = ∅ for every i, j, k ∈ { 1 , 2 , . . . , n } pairwise differ- 

ent. 

(c) f k : X −→ X is an injective function for every k ∈ { 1 , 2 , . . . , n } . 
Then the following statements are equivalent: 

(1) A is a dendrite. 

(2) The graph ( ( 1 , . . . , n ) , G ) is a tree and card ( A i ∩ A j ) ∈ {0, 1} for 

every i, j ∈ { 1 , 2 , . . . , n } different. 

In [10] and [11] were studied the critical points of an attrac- 

tor of an iterated function system, some connections with the 

canonical projection and attractors that are homeomorphic to a 

quotient space of the shift space by some equivalence relation. 

We consider the following properties for Hata’s tree and Koch’s 

curve: Hata’s tree, let us say A , is the attractor of the injective 

functions defined in the complex plane f 0 (z) = c z and f 1 (z) = 

(1 − | c| 2 ) z + | c| 2 , where c ∈ C and | c| , | 1 − c| ∈ (0 , 1) , A 0 ∩ A 1 = 

f 0 (A ) ∩ f 1 (A ) = {| c| 2 } and the intersection point satisfies 
{| c | 2 } = 

π( 001 ∞ ) = π (10 ∞ ); Koch’s curve, let us say B , is the attractor of 
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