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a b s t r a c t 

The model of transmission dynamics of vector-borne diseases with vertical transmission and cure within 

a targeted population is extended to the concept of fractional differentiation and integration with non- 

local and non-singular fading memory introduced. The effect of vertical transmission and cure rate on the 

basic reproduction number is shown. The Atangana–Baleanu fractional operator in caputo sense (ABC) 

with non-singular and non-local kernels is used to study the model. The existence and uniqueness of 

solutions are investigated using the Picard–Lindel method. Ultimately, for illustrating the acquired results, 

we perform some numerical simulations and show graphically to observe the impact of the arbitrary 

order derivative. It is expected that the proposed model will show better approximation than the classical 

model established before. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Vector-borne diseases are infectious diseases which are trans- 

mitted to humans and animals by blood-feeding arthropods. Some 

well known vector-borne diseases include West dengue fever, 

Nile virus, malaria, viral encephalitis e.t.c [1] . The diseases are 

caused by pathogens like parasites, bacteria and viruses. Arthro- 

pods insects that suck the human and animals blood. Such in- 

sects includes mosquitoes, biting flies, ticks, e.t.c [2] . They trans- 

mit the pathogens to human host by carrying them from an in- 

fected host.Vector-borne diseases are more common places with 

hot weather conditions, like tropics and sub-sahara deserts. The 

diseases are some of the most relevant cause of global health ill- 

nesses and a lot of them are killer diseases [3] . The World Health 

Organization (WHO)reported the numbers of deaths in different 

parts of the world yearly. Almost 700 million humans get in- 

fected by mosquito-borne sicknesses out of which about one mil- 

lion deaths are recorded annually [4,5] . Based on the above facts, 

one can see that it is vital to control these diseases. Therefore, it is 
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important to understand the dynamic behaviors of the diseases in 

order to come up with a comprehensive treatment of the infected 

hosts [5] . 

Fractional operators have been applied to model a lot of prob- 

lems [8] . They have been applied in engineering, science, etc. A 

lot of models have been treated using different fractional opera- 

tors [7–15] . It is well known that Caputo and Riemann Liouville 

have singular kernels. To tackle the problem of singularity, a new 

fractional derivative was proposed in [9] . The Atangana–Baleanu 

derivative possesses the futures of the Caputo and Fabrizio with 

the kernel being non-local and non singular [9] . The aim of the ap- 

plication of the Atangana–Baleanu fractional operator is to include 

into the mathematical formulation of the dynamical system the ef- 

fect of non-local fading memory. Recent developments pertaining 

to this important derivative have been reported in [11–13] . One of 

the application of this operator is modelling biological problems is 

that, the physical problem within a targeted population follow the 

Mittag–Leffler law as the it is not non-local. Unlike the power law 

kernel used in the classical Riemann–Liouville and Caputo deriva- 

tive, the Mittag–Leffler guarantees no singularity; this helps us to 

have a clear knowledge of the beginning and of the end of the 

evolution of the model under consideration. Therefore, Eq. (1) will 

be extended using this differential operator with the Mittag–Leffler 

kernel. Recent studies in numerical and analytical techniques of 
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Table 1 

Description of model parameters in Eq. (1) . 

S ( t ) Size of susceptible population. 

I ( t ) Size of infectious population. 

T ( t ) Size of population under treatment. 

R ( t ) Size of recovered population. 

V ( t ) Size of susceptible vector population. 

W ( t ) Size of infected vector population. 

ε1 Fraction of human host given birth by infected parents in b 1 . 

β1 Rate of direct transmission of the disease. 

β2 The vector mediated transmission rate. 

α Rate at which infectious humans are treated. 

ε2 Fraction of human host given birth by infected parents in b 2 . 

μ1 is the natural mortality rate of a human. 

μ2 Rate of natural mortality of the vector population. 

δ1 Rate of suffering of the disease leading to death in some instances. 

δ2 Rate at which Infectious vectors die. 

ηI Natural recovery rate. 

b 1 Constant birth rate at which human host population are recruited. 

b 2 Constant recruitment rate of vector population. 

γ Rate of recovery of treated humans. 

β3 Rate at which mosquitoes become infected upon biting infected human. 

non-local kernel are getting interesting to researchers studying in 

this field.The classical form of the model was recently proposed in 

[5] . The global stability analysis and numerical simulation of the 

model were studied. The main suppose of this study is to expand 

the model under consideration by replacing the derivative with the 

ABC [5] . 

In this work, we aim to study the uniqueness and existence of 

special solutions of the model under the Atangana–Baleanu oper- 

ator using the Picard–Lindelof method [8] . Then, numerical sim- 

ulation of the model will be put in place using a newly estab- 

lished numerical scheme for the Atangana–Baleanu fractional op- 

erator [10] . The model is represented by the nonlinear system of 

ordinary differential equations given by [5] : ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

dS(t) 
dt 

= (1 − ε1 I) b 1 − β1 SY − β2 SW − μ1 S, 

dI(t) 
dt 

= ε1 b 1 I + β1 SI + β2 SW − αI − ηI − δ1 I − μ1 I, 

dT (t) 
dt 

= αI − γ I − δ1 T − μ1 T , 

dR (t) 
dt 

= ηI + γ T − μ1 R, 

dV (t) 
dt 

= (1 − ε2 W ) b 2 + β3 V I − μ2 W, 

dW (t) 
dt 

= ε2 b 2 W + β3 V I − δ2 W − μ2 W. 

(1) 

with the initial conditions S (0) ≥ 0, I ( t ) ≥ 0, T (0) ≥ 0, R (0) ≥ 0, 

V (0) ≥ 0, W (0) ≥ 0, where the parameters in the model are defined 

in the Table 1 [6] . Fig. 1 shows the flow chart represents the inter- 

actions and transfer of a vector-borne disease in both human and 

vector populations. 

2. Fractional order derivative with Mittag–Leffler kernel 

In this part, we consider some properties and definitions of the 

new fractional derivatives [5] . 

Definition 1. Let f ∈ K 

′ ( b, d ), d > b, ρ ∈ [0, 1], the AB fractional op- 

erator in Caputo sense (ABC) can be represented by: 

ABC 
b D 

ρ
t f (t) = 

F (ρ) 

1 − ρ

∫ t 

b 

f ′ ( τ ) E ρ

[
− ρ

( t − τ ) ρ

1 − ρ

]
dτ. (2) 

In Eq. (2) , F ( ρ) is a normalized function with F (0) = F (1) = 1 . 

Fig. 1. The flow chart of the model parameters interactions [6] . 

Definition 2. A fractional integral with order ρ of a fractional op- 

erator is represented by the following 

AB 
b D 

ρ
t f (t) = 

F (ρ) 

1 − ρ

d 

dt 

∫ t 

b 

f ( τ ) E ρ

[
− ρ

( t − τ ) ρ

1 − ρ

]
dτ. (3) 

Definition 3. Consider f ∈ K 

′ ( b, d ), d > b, ρ ∈ [0, 1], which may not 

be differentiable, the AB fractional operator in Riemann–Liouville 

(ABR) sense can be represented by: 

ABR 
b D 

ρ
t f (t) = 

1 − ρ

F ( ρ) 
f ( t) + 

ρ

F ( ρ)
( ρ) 

∫ t 

b 

f ( τ )( t − τ ) ρ−1 dτ. (4) 

2.1. Properties of the Atangana–Baleanu derivative 

The above definitions have been applied to model a lot of real- 

world application. Consider the relationship between the deriva- 

tives and Laplace transform as given in [9] : 

L 

{
ABR 
0 D 

ρ
t f (t) 

}
(p) = 

F (ρ) 

1 − ρ

p ρL{ f ( t) } ( p) 

p ρ + 

ρ
1 −ρ

. (5) 

and 

L 

{
ABC 
0 D 

ρ
t f (t) 

}
(p) = 

F (ρ) 

1 − ρ

p ρL{ f ( t) } ( p) − P ρ−1 f (0) 

p ρ + 

ρ
1 −ρ

. (6) 

Theorem 2.1. Let f be continuous on [ b, d ] . The following relation 

holds on [ b, d ] [7] 

∥∥ABR 
b D 

ρ
t f (t) 

∥∥ < 

B (ρ) 

1 − ρ
‖ 

f (x ) ‖ 

, (7) 

here, ‖ f (x ) ‖ = max b≤x ≤d | f (x ) | . 
Theorem 2.2. The following Lipschitz conditions are satisfied for both 

(ABC)and (ABR) for any two functions f ( t ) and g ( t ) [7] : ∥∥ABR 
0 D 

ρ
t f (t) − ABR 

0 D 

ρ
t g(t) 

∥∥ ≤ H ‖ 

f (t) − g(t) ‖ 

, (8) 

and ∥∥ABC 
0 D 

ρ
t f (t) − ABC 

0 D 

ρ
t g(t) 

∥∥ ≤ H ‖ 

f (t) − g(t) ‖ 

. (9) 

Theorem 2.3. The following fractional ODE 

ABC 
0 D 

ρ
t f (t) = u (t) (10) 

has the following unique solution [5] : 

f (t) = 

1 − ρ

F ( ρ) 
u ( t) + 

ρ

F ( ρ)
( ρ) 

∫ t 

b 

u ( τ )( t − τ ) ρ−1 dτ. (11) 
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