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a b s t r a c t 

Adams-Bashforth was recognized as powerful numerical method to solve linear and non-linear ordinary 

differential equations. Nevertheless the method was applicable only for ordinary differential equations 

mostly with integer order. Atangana and Batogna have extended this method for partial differential equa- 

tion with the Atangana-Baleanu fractional derivative. In this paper, to accommodate partial differential 

equation with Caputo-Fabrizio derivative, we suggest the corresponding method with this derivative. We 

applied the method to solve numerically a very interesting non-linear partial differential equation ac- 

counting for the motion of a viscous fluid. Some simulations are presented to test the efficiency of the 

numerical method. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the last decades, numerical methods have been used very 

successfully to solve complex mathematical models arising in all 

fields of science, technology and engineering, especially those 

mathematical models that could not be solved using analyti- 

cal methods. As the science, technology and industries evolved, 

mankind, each day discovers new and complex real world prob- 

lems that need urgent attention. In many instances, already sug- 

gested numerical schemes are found not suitable for solving ac- 

curately such complicated mathematical models, therefore new 

schemes are needed. One of the powerful numerical scheme 

for solving nonlinear equations is perhaps the Adams-Bashforth 

method which is a multi-steps methods [5–10] , the method has 

been intensively applied in many problems arising in chem- 

istry, biology, epidemiology and engineering in dynamical systems, 

physics, earth science, chemistry) and engineering disciplines (such 

as computer science, electrical engineering), as well as in the so- 

cial sciences (such as economics, psychology, sociology, political 

science). However, this method can only be used in the case of 

nonlinear ordinary differential equations, an extension was also 

made for fractional differential equations. Only very recently, Atan- 

gana and Batogna extended this method to solve partial differen- 

tial equations, in particular those partial differential equation with 

the Atangana-Baleanu derivative. The method has attracted atten- 

tion of some researchers and has been applied with great suc- 

cess. Nevertheless there exists in the literature another important 

E-mail address: ikoca@mehmetakif.edu.tr 

differential operator with no singular kernel known as Caputo- 

Fabrizio derivative, which naturally has generated new mathemati- 

cal models constructed with partial and ordinary differential equa- 

tions [12,16–23] . In this paper in order to solve such mathematical 

models, a corresponding numerical method to what was proposed 

by Atangana and Batogna in the case of Atangana-Baleanu deriva- 

tive is needed and will be derived in this paper. The method devel- 

oped by Atangana and Batogna is a combination of Laplace trans- 

form operator, Adams-Bashforth numerical scheme, inverse Laplace 

transformation and finite difference method like backward and for- 

ward. 

The remainder of this paper is follows that , in section one; 

some useful definitions and properties of Caputo-Fabrizio and 

Atangana-Baleanu derivative are given, in section two; general 

fractional differential equation with fading memory included via 

Caputo-Fabrizio fractional derivative is considered and numerical 

scheme for equation is obtained. In the subsection of two, applica- 

tion of the Atangana-Batogna method on the time fractional mo- 

tion of a viscous fluid equation via Caputo-Fabrizio derivative is 

done. In section three; general fractional differential equation with 

fading memory included via Atangana-Baleanu fractional derivative 

is considered and numerical scheme for equation is obtained. Sim- 

ilarly of the subsection two, in the subsection of three, application 

of the Atangana-Batogna method on the time fractional motion of 

a viscous fluid equation via Atangana-Baleanu derivative is done. 

Finally in section five, we present the numerical simulation of the 

our equation for different values. 
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2. Fractional derivatives with exponential and Mittag-Leffler 

kernels 

In the last 3 years, the field of fractional differentiation and in- 

tegration has witness a great development as some new and very 

promising differential and integral operators have been suggested”. 

These new differential and integral operators have been used in- 

tensively and are in fashion nowadays. In this section, let us re- 

mind the definitions of the new fractional derivatives [1–3] . 

Definition 1. Let f ∈ H 

1 ( a, b ), b > a , α ∈ [0 , 1] then, the definition of 

the new fractional derivative (Atangana-Baleanu derivative in Ca- 

puto sense) is given as: 

ABC 
a D 

α
t f ( t ) = 

B (α) 

1 − α

∫ t 

a 

f 
′ 
(x ) E α

[
−α

( t − x ) 
α

1 − α

]
dx, (1) 

where ABC 
a D 

α
t is fractional operator with Mittag-Leffler kernel in 

the Caputo sense with order α with respect to t and B ( α) = B (0) = 

B (1) = 1 is a normalization function [3] . 

It can be noted that the above definition is helpful to model 

real world problems. Also it has a great advantage while using the 

Laplace transform to solve problem with initial condition. 

Definition 2. Let f ∈ H 

1 ( a, b ), b > a , α ∈ [0 , 1] and not differentiable 

then, the definition of the new fractional derivative (Atangana- 

Baleanu fractional derivative in Riemann-Liouville sense) is given 

as: 

ABR 
a D 

α
t f ( t ) = 

B (α) 

1 − α

d 

dt 

∫ t 

a 

f (x ) E α

[
−α

( t − x ) 
α

1 − α

]
dx. (2) 

Definition 3. The fractional integral of order α of a new fractional 

derivative is defined as: 

AB 
a I αt f (t) = 

1 − α

B ( α) 
f ( t) + 

α

B ( α)�( α) 

∫ t 

a 

f ( y )( t − y ) α−1 dy. (3) 

When α is zero, initial function is obtained and when α is 1, the 

ordinary integral is obtained. 

Theorem 1. The following time fractional ordinary differential 

equation 

ABC 
0 D 

α
t f ( t ) = u (t) , (4) 

has a unique solution with taking the inverse Laplace transform 

and using the convolution theorem below [4] : 

f (t) = 

1 − α

B ( α) 
u ( t) + 

α

B ( α)�( α) 

∫ t 

a 

u ( y )( t − y ) α−1 dy. (5) 

Definition 4. : Let f ∈ H 

1 ( a, b ), b > a , α ∈ [0 , 1] then, the new Ca- 

puto derivative of fractional derivative is defined as : 

CF 
a D 

α
t f ( t ) = 

M(α) 

1 − α

∫ t 

a 

f 
′ 
(x ) exp 

[ 
−α

( t − x ) 

1 − α

] 
dx. (6) 

where M ( α) is a normalization function such that M(0) = M(1) = 1 

. However, if the function does not belongs to H 

1 ( a, b ) then, the 

derivative can be reformulated as 

CF 
a D 

α
t f ( t ) = 

αM(α) 

1 − α

∫ t 

a 

( f (t) − f (x )) exp 

[ 
−α

( t − x ) 

1 − α

] 
dx. (7) 

Definition 5. Let 0 < α < 1. The fractional integral of order α of a 

function f is defined by 

I t α f (t) = 

2(1 − α) 

( 2 − α) M(α) 
f ( t) + 

2 α

( 2 − α) M( α) 

∫ t 

0 

f ( s ) ds, t ≥ 0 . 

(8) 

3. Numerical method for partial differential equation via 

Caputo-Fabrizio derivative 

Due to the wider applicability of the new fractional differen- 

tial operator called the Caputo-Fabrizio derivative, some new tech- 

niques including analytical and numerical are requested to accom- 

modate mathematical models constructed via this operators. While 

it is considered as local in terms of time memory, but yet the 

differential operator is in-build with another kind of non-locality. 

The kind of non-locality of this operator can be seeing in details 

in the following distinguished already published papers [11,13,14] . 

We aim in this section, to provide a numerical scheme that was al- 

ready suggested by Atangana and Batogna for solving partial differ- 

ential equations with non-integer order [15] . To do this, we present 

the derivation using a general partial differential equation with the 

Caputo-Fabrizio derivative. 

CF 
0 D 

α
t u (x, t) = Au (x, t) + Bu (x, t) , (9) 

where A is a linear operator and B is a non-linear operator. Apply- 

ing Laplace transform on both sides of the equation we have 

L 

{
CF 
0 D 

α
t u (x, t) 

}
= L { Au (x, t) + Bu (x, t) } , (10) 

CF 
0 D 

α
t u (p, t) = L { Au (x, t) + Bu (x, t) } . 

Let us take u (p, t) = u (t) and L { Au (x, t) + Bu (x, t) } = F (u, t) then 

we have 

CF 
0 D 

α
t u (t) = F (u, t) (11) 

then we have 

M(α) 

1 − α

∫ t 

0 

u 

′ 
(x ) exp 

[ 
−α

t − x 

1 − α

] 
dx = F (u, t) . (12) 

Using the fundamental theorem of calculus, we convert the above 

to Caputo Fabrizio fractional integral equation as below: 

u (x, t) − u (x, 0) = 

2(1 − α) 

(2 − α) M(α) 
F (u, t) 

+ 

2 α

(2 − α) M(α) 

∫ t 

0 

F (u, τ ) dτ. (13) 

When t = t n +1 , we have 

u (x, t n +1 ) − u (x, 0) = 

2(1 − α) 

(2 − α) M(α) 
F (u, t n +1 ) 

+ 

2 α

(2 − α) M(α) 

∫ t n +1 

0 

F (u, τ ) dτ. (14) 

When t = t n , we have 

u (x, t n ) − u (x, 0) = 

2(1 − α) 

(2 − α) M(α) 
F (u, t n ) 

+ 

2 α

(2 − α) M(α) 

∫ t n 

0 

F (u, τ ) dτ. (15) 

Then we can write follows that 

u (x, t n +1 ) − u (x, t n ) = 

2(1 − α) 

(2 − α) M(α) 
( F (u, t n +1 ) − F (u, t n ) ) (16) 

+ 

2 α

(2 − α) M(α) 

(∫ t n +1 

0 

F (u, τ ) dτ −
∫ t n 

0 

F (u, τ ) dτ

)
. 

Here, 

∫ t n +1 

0 

F (u, τ ) dτ = 

n ∑ 

j=0 

∫ t j+1 

t j 

F (u, τ ) dτ, (17) 

∫ t n 

0 

F (u, τ ) dτ = 

n −1 ∑ 

j=0 

∫ t j+1 

t j 

F (u, τ ) dτ. 
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