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a b s t r a c t 

We investigate conditions for the quasi-normal modes of a Schwarzschild white hole for lower angular 

momentum. In determining these normal modes, we use numerical methods to solve the solution of the 

linearized Einstein vacuum equations in null cone coordinates. The same model is generalized to non- 

local fractional operator theory where the model is solved numerically thanks to a method proposed by 

Toufik and Atangana. In fact, approaching this kind of problem analytically seems to be an impossible 

task as comprehensively articulated in the literature. We show existence of quasi-normal modes of a 

Schwarzschild white hole for lower angular momentum l = 2 . Moreover, the non-local fractional operator 

appears to be a perturbator factor for the system as shown by numerical simulations that compare the 

types of dynamics in the system. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The linear perturbation theory applied to black hole was de- 

veloped many years ago. The main idea here comes from the 

fact that the vacuum Einstein equations are linearized about the 

Schwarzschild (or Kerr) geometry which is described by the stan- 

dard well-known coordinates, namely ( t, r, θ , φ). Then, one can 

apply a simple separation of variables ansatz, leading to the met- 

ric quantities that behave like an unknown function of variable r 

× Y � m 

( θ , φ)exp ( i σ t ). It is important to mention that the angular 

dependence is somewhat very complicated, and the technical de- 

tails related to it is available in the literature. One of the common 

ways to obtain the quasi-normal modes is by seeking and inves- 

tigating the solutions to the Zerilli equation which should verify 

suitable boundary conditions in the event horizon’s neighborhood 

and infinity’s neighborhood. It was then proved that there exist so- 

lutions only in the case of certain special values taken by the pa- 

rameter σ [2,5,10] . 
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The theory of quasi-normal mode has slowly become a cor- 

nerstone for the modern theory of general relativity. It appears in 

some kind of simulations, like the numerical relativity simulations 

of binary black hole coalescence. And, while it is not yet actually 

observed, we really expect it to be measured by the LIGO collabo- 

ration, and certainly by LISA, and therefore, leading to concise in- 

formation about the parameters that describe a black hole from 

some coalescence event. 

The approach commonly used for linear perturbations of 

a black hole includes the performance of linearization using 

well-known standard Schwarzschild (or Kerr) coordinates ( t, r, θ , 

φ). We can also perform the same linearization making use of 

Bondi–Sachs coordinates, which represent a system of coordinates 

based on outgoing null cones. Those techniques have been done in 

previous works and the main objective was find analytic solutions 

of the linearized Einstein equations, and this, for the sole goal of 

testing numerical relativity codes [9,15,19] . As with the standard 

well-known approach, we finish by obtaining a second order 

ordinary differential equation involving � and σ as parameters, 

Eq. (2.9) . However, after the quasi-normal modes were found for 

that equation, it was pointed out that they are different from 

those found in Zerilli equation. The reason come from the fact that 

the different physical problems are considered in the two cases, as 
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Fig. 1. Carter–Penrose conformal diagram for a Schwarzschild geometry. 

illustrated in the Carter–Penrose conformal diagram of 

Schwarzschild space-time ( Fig. 1 ) below [5] . In Fig, reffig1, K
is a typical hypersurface used in finding the quasi-normal modes 

of the Zerilli equation, and the direction of wave propagation at 

the boundaries of K is shown by arrows. On the other hand, N 

is a typical hypersurface used in finding the quasi-normal modes 

of Eq. (2.9) . From the direction of wave propagation on N , it is 

clear that this leads to the quasi-normal modes of a white holes. 

To briefly summarize the content of this paper, we start with the 

background material work on the Bondi–Sachs metric and lin- 

earized solutions within the Bondi frame. After that, we describe 

the mathematical algorithm and the numerical approach to calcu- 

lating the quasi-normal modes of a Schwarzschild white hole, and 

continue by presenting the results. Then follows the generalization 

to non-local operator theory and numerical simulations. 

2. Background material 

The Bondi–Sachs formalism uses coordinates x i = ( u , r, x A ) 

based upon a family of outgoing null hypersurfaces. We label these 

hypersurfaces by u = const., null rays by x A (A = 2 , 3) , and the sur- 

face area coordinate by r . In this coordinates system the Bondi–

Sachs metric [6,18] takes the form 

ds 2 = −
[ 

e 2 β
(

1 + 

W 

r 

)
− r 2 h AB U 

A U 

B 
] 

d u 

2 − 2 e 2 βd ud r 

− 2 r 2 h AB U 

B d ud x A + r 2 h AB d x 
A d x B , (2.1) 

where h AB h BC = δA 
B and det(h AB ) = det(q AB ) , with q AB being a unit 

sphere metric, U is the spin-weighted field given by U = U 

A q A . 

For a Schwarzschild space-time, W = −2 M. We define the complex 

quantity J by 

J = q A q B h AB / 2 . (2.2) 

For the Schwarzschild space-time, we have J and U being zero 

and thus they can be regarded as a measure of the deviation from 

spherical symmetry, and in addition, they contain all the dynamic 

content of the gravitational field in the linearized regime [4] . Usu- 

ally we can describe this space-time by β = 0 and W = −2 M, or 

by β = βc ( constant ) and W = (e 2 βc − 1) r − 2 M. 

For spherical harmonics we use s Z lm 

rather than s Y lm 

as basis 

functions as follows [3] 

s Z lm 

= 

1 √ 

2 

[ s Y lm 

+ (−1) m 

s Y l−m 

] for m > 0 

s Z lm 

= 

i √ 

2 

[(−1) m 

s Y lm 

−s Y l−m 

] for m > 0 

s Z l0 = s Y l0 , (2.3) 

The s = 0 will be omitted in the case s = 0 , i.e. Z lm 

= 0 Z lm 

. The s Z lm 

are orthonormal and real. We assume the following ansatz 

J = Re (J 0 (r) e iσu ) 2 Z lm 

, U = Re (U 0 (r) e iσu ) 2 Z lm 

, 

β = Re (β0 (r) e iσu ) 2 Z lm 

, w = Re (w 0 (r) e iσu ) 2 Z lm 

, (2.4) 

where l, r 0 , and σ are fixed. The Einstein vacuum equations for the 

hypersurface equations and evolution equation are [3] 

R 11 : 
4 

r 
β,r = 8 πT 11 (2.5) 

q A R 1 A : 
1 

2 r 
(4 ð β − 2 rð β,r + r ð J ,r + r 3 U ,rr + 4 r 2 U ,r ) 

= 8 πq A T 1 A (2.6) 

h 

AB R AB : (4 − 2 ð ð ) β + 

1 

2 

( ð 
2 
J + ð 

2 J ) + 

1 

2 r 2 
(r 4 ð U + r 4 ð U) ,r − 2 ω ,r 

= 8 π(h 

AB T AB − r 2 T ) (2.7) 

q A q B R AB : −2 ð 
2 β + (r 2 ð U) ,r − 2(r − M) J ,r −

(
1 − 2 M 

r 

)
r 2 J ,rr 

+ 2 r (r J) ,ur = 8 πq A q B T AB . (2.8) 

By applying ansatz (2.4) to equations (2.7) –(2.8) we get system of 

ordinary differential equations which we solve to get 

x 3 (1 − 2 xM) 
d 2 J 2 
dx 2 

+ 2 

dJ 2 
dx 

(2 x 2 + iσ x − 7 x 3 M) 

− 2(x (l 2 + l − 2) / 2 + 8 Mx 2 + iσ ) J 2 = 0 (2.9) 

where J 2 (x ) ≡d 2 J 0+ /dx 2 and x = 1 /r. Eq. (2.9) cannot be solved an- 

alytically, so, we are going to solve it numerically. 

2.1. The transformation to Riccati equation 

From Eq. (2.9) with M = 1 we get 

x 3 (1 − 2 x ) 
d 2 J 2 
dx 2 

+ 2 x (2 x + iσ − 7 x 2 ) 
dJ 2 
dx 

− 2(2 x + 8 x 2 + iσ ) J 2 = 0 . 

(2.10) 

Now our task is to solve Eq. (2.9) in the interval [0,0.5]. To ob- 

tain stability of the numerics, and hence better numerical results, 

Chandrasekhar et al. [7] showed that Eq. (2.9) is better handled as 

a Riccati type equation. To do this we start by making the trans- 

formation 

J 2 (x ) → u (x ) = 

1 

J 2 (x ) 

dJ 2 (x ) 

dx 
, (2.11) 

so that 

dJ 2 
dx 

= uJ 2 , (2.12) 

and thus 

d 2 J 2 
dx 2 

= 

du 

dx 
J 2 + u 

dJ 2 
dx 

= J 2 

(
du 

dx 
+ u 

2 

)
. (2.13) 

By substituting Eq. (2.13) into Eq. (2.10) we get 

x 3 (1 − 2 x ) 

(
du 

dx 
+ u 

2 

)
+ 2 x (2 x + iσ − 7 x 2 ) u − 2(2 x + 8 x 2 + iσ ) = 0 . 

(2.14) 

We further make another transformation 

u (x ) → v (x ) = 

1 

u (x ) 
, (2.15) 

and we observe that at small x, v ∼ x . Now substituting 

Eq. (2.15) into Eq. (2.14) we obtain 

x 3 (1 − 2 x ) 

(
1 − dv 

dx 

)
+ 2 x (2 x + iσ − 7 x 2 ) v 
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