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a b s t r a c t 

In the present article, Petrov–Galerkin method has been utilized for the numerical solution of nonlinear 

time-fractional KdV–Burgers (KdVB) equation. The nonlinear KdV–Burgers equation has been solved nu- 

merically through the Petrov–Galerkin approach utilising a quintic B-spline function as the trial function 

and a linear hat function as the test function . The numerical outcomes are observed in good agreement 

with exact solutions for classical order. In case of fractional order, the numerical results of KdV–Burgers 

equations are compared with those obtained by new method proposed in [1] . Numerical experiments 

exhibit the accuracy and efficiency of the approach in order to solve nonlinear dispersive and dissipative 

problems like the time-fractional KdV–Burgers equation. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

A well-known equation viz. the Korteweg–de Vries–Burgers 

equation has been examined in the present study which plays an 

essential role in both applied mathematics and physics. The anal- 

ysis of nonlinear phenomena has always been an active subject in 

applied science and physics. In past few years, tremendous effort 

has been anticipated on the analysis of nonlinear evolution equa- 

tions occurred in mathematical physics. As a classic nonlinear PDE, 

the KdV type equations [ 2–4 ] had been received more attention 

particularly due to its diverse implementations in plasma physics, 

solid state physics and quantum field theory. 

The KdV–Burgers equation is a nonlinear partial differential 

equation of the form 

u t + εu u x − νu xx + μu xxx = 0 (1.1) 

which was first derived by Su and Gardner [5] . It arises in quite 

a lot of contexts as a model equation incorporating a few fore- 

most physical phenomena viz. dispersion, viscosity and nonlinear 
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advection. This equation arises within the description of long wave 

propagation in shallow water [6] , propagation of waves in elastic 

tube stuffed with a viscous fluid [7] and weakly nonlinear plasma 

waves with certain dissipative effects [8] . It additionally represents 

long wavelength approximations where the effect of the nonlinear 

advection uu x is counterbalanced by means of the dispersion u xxx . 

Eq. (1.1) is combination of the KdV equation (when ν = 0 ) and 

the Burgers’ equation (when μ = 0 ). The KdV equation was first 

proposed by Korteweg and Vries in 1895 [9] . Initially this equa- 

tion is derived as an evolution equation that governs small ampli- 

tude, long surface gravity waves propagating in a shallow channel 

of water [10] . This equation was also utilized to analyze the change 

in shape of long waves moving in a rectangular channel [9,11] . In 

the year 1939, Burger proposed an equation (known as Burgers’ 

equation) for the study of turbulence and approximate theory of 

flow through a shock wave traveling in a viscous fluid [ 12–14 ]. 

When diffusion dominates dispersion, the numerical solutions of 

Eq. (1.1) have a tendency to behave like Burgers’ equation solu- 

tions and hence the steady-state solutions of the KdVB equation 

are monotonic shocks. However, when dispersion dominates, the 

KdV behaviour is observed and the shocks are oscillatory. 
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Table 1 

The absolute errors acquired by Petrov–Galerkin method with respect to solution attained by new method in Ref. [1] for time- 

fractional KdV–Burgers equation at various points of x and t taking α = 0 . 75 , λ = 1 , ε = 6 , ν = 1 and μ = 2 . 

x | u PGM − u Exact | 
t = 0 . 2 t = 0 . 3 t = 0 . 4 t = 0 . 5 t = 0 . 6 t = 0 . 7 t = 0 . 8 t = 0 . 9 

0.1 1.46833E-3 2.79680E-3 4.03999E-3 5.21834E-3 6.34158E-3 7.41499E-3 8.44173E-3 9.42393E-3 

0.2 1.47268E-3 2.80387E-3 4.04863E-3 5.22763E-3 6.35075E-3 7.42339E-3 8.44882E-3 9.42925E-3 

0.3 1.47692E-3 2.81075E-3 4.0570E-3 5.23656E-3 6.35949E-3 7.43129E-3 8.45536E-3 9.43397E-3 

0.4 1.48107E-3 2.81745E-3 4.06509E-3 5.24514E-3 6.36780E-3 7.43871E-3 8.46143E-3 9.43807E-3 

0.5 1.48512E-3 2.82396E-3 4.07291E-3 5.25337E-3 6.37568E-3 7.44562E-3 8.46676E-3 9.44157E-3 

0.6 1.48908E-3 2.83028E-3 4.08045E-3 5.26124E-3 6.38314E-3 7.45204E-3 8.47164E-3 9.4 4 4 46E-3 

0.7 1.49293E-3 2.83640E-3 4.08772E-3 5.26875E-3 6.39017E-3 7.45797E-3 8.47595E-3 9.44674E-3 

0.8 1.49669E-3 2.84234E-3 4.09472E-3 5.27591E-3 6.39676E-3 7.46341E-3 8.47972E-3 9.44842E-3 

0.9 1.50034E-3 2.84809E-3 4.10143E-3 5.28272E-3 6.40293E-3 7.46834E-3 8.48293E-3 9.44 94 9E-3 

1.0 1.50390E-3 2.85364E-3 4.10787E-3 5.28916E-3 6.40867E-3 7.47279E-3 8.48559E-3 9.44996E-3 

Table 2 

The absolute errors acquired by Petrov–Galerkin method with respect to solution attained by new method in Ref. [1] for time- 

fractional KdV–Burgers equation at various points of x and t taking α = 0 . 5 , ε = 6 , ν = 0 . 05 , λ = 10 and μ = 0 . 1 . 

x | u PGM − u Exact | 
t = 0 . 1 t = 0 . 2 t = 0 . 3 t = 0 . 4 t = 0 . 5 t = 0 . 6 t = 0 . 7 t = 0 . 8 t = 0 . 9 

0.1 1.7701E-4 2.5821E-4 2.7527E-4 2.8030E-4 2.8209E-4 2.8281E-4 2.8313E-4 2.8328E-4 2.8335E-4 

0.2 1.7476E-4 2.5594E-4 2.7284E-4 2.7781E-4 2.7958E-4 2.8030E-4 2.8062E-4 2.8076E-4 2.8084E-4 

0.3 1.7328E-4 2.5369E-4 2.7042E-4 2.7535E-4 2.7710E-4 2.7781E-4 2.7812E-4 2.7827E-4 2.7834E-4 

0.4 1.7181E-4 2.5146E-4 2.6802E-4 2.7290E-4 2.7464E-4 2.7534E-4 2.7565E-4 2.7579E-4 2.7587E-4 

0.5 1.7035E-4 2.4924E-4 2.6565E-4 2.7047E-4 2.7219E-4 2.7289E-4 2.7319E-4 2.7334E-4 2.7341E-4 

0.6 1.6890E-4 2.4704E-4 2.6329E-4 2.6806E-4 2.6977E-4 2.7046E-4 2.7076E-4 2.7090E-4 2.7097E-4 

0.7 1.6746E-4 2.4486E-4 2.6094E-4 2.6568E-4 2.6736E-4 2.6804E-4 2.6834E-4 2.6 84 8E-4 2.6856E-4 

0.8 1.6603E-4 2.4269E-4 2.5862E-4 2.6331E-4 2.6497E-4 2.6565E-4 2.6595E-4 2.6609E-4 2.6616E-4 

0.9 1.6460E-4 2.4055E-4 2.5632E-4 2.6096E-4 2.6261E-4 2.6327E-4 2.6357E-4 2.6371E-4 2.6378E-4 

1.0 1.6319E-4 2.3842E-4 2.5403E-4 2.5862E-4 2.6026E-4 2.6092E-4 2.6121E-4 2.6135E-4 2.6142E-4 

Consider the time-fractional KdV–Burgers equation [ 15–19 ] as 

follows 

D 

α
t u + εu u x − νu xx + μu xxx = 0 (1.2) 

where ɛ , ν and μ are constants and α (0 < α ≤ 1) represents the 

order of fractional derivative. In this numerical technique, the 

fractional derivative has been discretized by Grünwald–Letnikov 

derivative and hence the fractional KdVB equation transformed to 

a finite difference equation, that has been adjusted in the form of 

implicit finite difference scheme. 

Numerous numerical and analytical methods have been initi- 

ated in recent past in order to analyse the classical KdV–Burgers 

equation. Methods such as the decomposition method [20] , tanh 

method [21] , hyperbolic tangent method and exponential rational 

function approach [22] , Septic B-spline method [23] , Radial ba- 

sis functions [24] , Quartic B-spline Galerkin approach [25] , modi- 

fied Bernstein polynomial [26] and quintic B-spline finite elements 

[27] had been developed independently and had been used to ac- 

quire numerical as well as exact solutions of KdVB equation. But, 

till now no numerical work has been reported to find the solution 

of fractional KdVB equation. Methods such as Adomian decompo- 

sition method [28] and homotopy perturbation method [15] were 

utilised to acquire the approximate solution of fractional KdVB 

equation. The explicit and approximate solutions of the nonlinear 

fractional KdVB equation were presented in [17] . 

This manuscript emphasizes on the implementation of Petrov–

Galerkin technique for solution of time-fractional KdVB equation 

with a perception to manifest the abilities of this present tech- 

nique in dealing with nonlinear equation. The primary inten- 

tion is to demonstrate the competence and reliability of Petrov–

Galerkin technique in solving time-fractional KdV–Burgers equa- 

tion. 

Table 3 

L 2 and L ∞ error norms for KdV–Burgers equation using Petrov–Galerkin method at 

various points of t taking α = 1 , ε = 6 , ν = 0 . 0 0 05 and μ = 0 . 1 . 

t L 2 L ∞ 

0.1 1.29814E-10 8.90530E-11 

0.2 3.24729E-10 2.22708E-10 

0.3 4.55738E-10 3.12239E-10 

0.4 6.51429E-10 4.46194E-10 

0.5 7.83639E-10 5.36188E-10 

0.6 9.80090E-10 6.70419E-10 

0.7 1.11351E-9 7.60861E-10 

0.8 1.31070E-9 8.95346E-10 

0.9 1.44534E-9 9.86221E-10 

1.0 1.61436E-9 9.16034E-10 

2. Fractional derivative and integrals 

There are several approaches to define the derivatives of frac- 

tional order such as Grünwald–Letnikov, Riemann–Liouville and 

Caputo. Riemann–Liouville fractional derivative is not suitable for 

real world physical problems as it requires the definition of frac- 

tional order initial conditions, which have no physically meaning- 

ful explanation. Caputo introduced an alternative definition, which 

has the advantage of defining integer order initial conditions for 

fractional order differential equations. 

Definition. The Grünwald–Letnikov fractional derivative of a func- 

tion f ( t ), is defined as [ 29–31 ] 

a D 

α
t f (t) = lim 

h → 0 
nh = t−a 

h 

−α
n ∑ 

r=0 

ω 

α
r f (t − rh ) (2.1) 

where ω 

α
r = (−1) r ( 

α
r 
) , 

ω 

α
0 = 1 and ω 

α
r = 

(
1 − α+1 

r 

)
ω 

α
r−1 , r = 1 , 2 , . . . 
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