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a b s t r a c t 

Energy transport and storage in α− helix proteins, in the presence of long-range intermolecular interac- 

tions, is addressed. The modified discrete Davydov model is first reduced to a space-fractional nonlinear 

Schrödinger (NLS) equation, followed by the stability analysis of its plane wave solution. The phenomenon 

is also known as modulational instability and relies on the appropriate balance between nonlinearity and 

dispersion. The fractional-order parameter ( σ ), related to the long-range coupling strength, is found to re- 

duce the instability domain, especially in the case 1 ≤σ < 2. Beyond that interval, i.e., σ > 2, the fractional 

NLS reduces to the classical cubic NLS equation, whose dispersion coefficient depends on σ . Rogue waves 

solution for the later are proposed and the biological implications of the account of fractional effects are 

discussed in the context of energy transport and storage in α− helix proteins. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Understanding the biological processes related to energy trans- 

port and storage in biomolecules remains one of the biggest 

challenges in molecular biophysics. A broad range of biological 

metabolisms need that energy, which is in general transported 

via proteins, initially released through the hydrolysis of adenosine 

triphosphate (ATP) [1] . Namely, considering the structure of α−
helix proteins, Davydov and Kislukha [2,3] used the exciton for- 

malism to explain the self-trapping of the amide-I oscillations as 

the consequence of the interaction between the vibrational exciton 

and the distortion in the protein structure resulting from the pres- 

ence of the exciton. They established that as a result of the inter- 

play between nonlinearity and dispersion, the self-trapped vibra- 

tional amide-I energy, coupled to the protein structure deforma- 

tion, may travel as a soliton in the protein strand [4,5] . Many stud- 

ies followed that seminal approach, looking for its detailed con- 

firmation both numerically and analytically [5–7] . Therefore, dif- 

ferent aspects of the Davydov model were investigated by Daniel 

and Deepamala [8] in the presence of higher-order molecular ex- 

citations, including competitive effects between first and second- 

neighbor interactions. Confirmation of solitons propagating in the 

α− helix chain has also been regarded recently by Tabi and co- 

workers [9–15] , following Daniel and Latha [16] formulation of 
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inter-spine coupling among three hydrogen-bonded protein chains. 

Some other interactions, such as diagonal and off-diagonal cou- 

pling of spines, were considered where the authors discussed the 

process of energy redistribution among adjacent spines [13] . The 

Davydov model, in presence of long-range (LR) intermolecular in- 

teractions, has also been the concern of Aboringong and Dikandé

[17] recently. They came to the conclusion that the finiteness of 

the interactions range was appropriate to predict efficient energy 

storage and transport in α− helix proteins. Based on the works of 

Tarasov and Zaslavsky [18,19] , it is also possible to reduce lattice 

models to their fractional formulation, especially when power-law 

LR interactions are considered. One of our main objectives in this 

work is to apply such formulation to the Davydov model. We in- 

tend to show that the discrete nonlinear Schrödinger (NLS) equa- 

tion of the Davydov model for α− helix proteins can be reduced 

to its space-fractional continuum version without loosing origi- 

nality. In this context, the theory of modulational instability (MI) 

[20–24] is used to predict the emergence of molecular solitonic 

structures, with insistence on their response to fractional-order ef- 

fect. The suitable balance between nonlinear and dispersive effects 

can lead to a broad range of solitonic waves, including envelope, 

breathers and Rogue waves (RWs). In plasma and optical physics 

[25] , investigating the close relationship between the occurrence of 

RWs and MI has been active research direction that remains fully 

unexploited when it comes to biological systems. In this paper, we 

show that beyond a threshold value of the fractional-order param- 

eter, the fractional NLS equation reduces to the cubic NLS equation 

whose dispersion coefficient depends on the fractional-order pa- 
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rameter. RW solutions are presented and discussed for this partic- 

ular case, including some biological implications. Some concluding 

remarks end the paper. 

2. Model and dynamical equation 

2.1. Model 

The generalized Hamiltonian for a linear chain of amide-I units 
that make an α− helix has been proposed by Davydov [1,2] . It con- 
siders the coupling between amide-I vibration, and displacements 
of amino-acid residues, and all the interactions are summarized in 

the following Hamiltonian [1,2,9,17] : 

H = 

∑ 

n 

[ 

h̄ ω 0 β
† 
n βn −

∑ 

m � = n 
J n −m 

(β† 
n βm 

+ βn β
† 
m 

) − Dβn β
† 
n β

† 
n +1 

βn +1 

] 

, (1) 

with the subscript n referring to the lattice index along a strand (or 

chain). The expression of H suggests that an individual amino acid 

will be identified by the index pair n , such that βn ( β† 
n ) are bo- 

son creation (annihilation) operators associated with intramolecu- 

lar vibrations of the n th peptide group. These operators satisfy the 

usual commutation relations for bosons, i.e., [ βn , β
† 
m 

] = δm,n and 

[ βn , βm 

] = 0 . � ω 0 is the local amide-I vibrational energy, and the 

term h̄ ω 0 β
† 
n βn is the vibrational energy at the site n . The term ∑ 

m � = n J n −m 

(β† 
n βm 

+ βn β
† 
m 

) is the energy related to the LR interac- 

tions between molecular excitations on sites n and m , belonging 

to the same chain. The coupling parameter J n −m 

is the LR transfer 

integral between sites n and m , here considered of the form Etémé

et al. [26–29] : 

J n −m 

= J 0 | n − m | −s , (2) 

with J 0 being the strength of the transfer integral and s a parame- 

ter range whose values are in the interval [1 , + ∞ [ . However s cov- 

ers different physical contexts, depending on its value. For example 

if s → ∞ , the LR interaction reduces to nearest-neighbor couplings. 

For s = 5 , the LR interaction is of a dipole-dipole type, while for 

s = 3 , the LR interaction is of the Coulomb type. We should stress 

that the strongest interaction effects are due to smaller values of s . 

We make use of the Heisenberg formulation and obtain the ex- 

citon equation in the form 

i h̄ 

∂βn 

∂t 
= h̄ ω 0 βn −

∑ 

m � = n 
J n −m 

βm 

− D (βn +1 β
† 
n +1 

+ β† 
n −1 

βn −1 ) βn . (3) 

In order to study coherent states, it will be useful to rewrite 

Eq. (3) in terms of eigenfunctions of the operators βn and β† 
n so 

that, if the Glauber coherent states |{ γn }〉 = 

∏ 

n | γn 〉 and b n | γn 〉 = 

γn | γn 〉 are introduced [30] , Eq. (3) becomes 

i h̄ 

∂γn 

∂t 
= h̄ ω 0 γn −

∑ 

m � = n 
J n −m 

γm 

− D (| γn +1 | 2 + | γn −1 | 2 ) γn , (4) 

which is a discrete nonlinear Schrödinger (DNLS) equation. We can 

get rid of the term in � ω 0 γ n via the gauge transformation γn (t) = 

u n (t) e −iω 0 t . This yields the DNLS equation 

i 
∂u n 

∂t 
= −

∑ 

m � = n 
J n −m 

u m 

− D (| u n +1 | 2 + | u n −1 | 2 ) u n , (5) 

where we have further made the change of variable t → t / � . 

2.2. The NLS equation with fractional derivative 

In order to derive the fractional-derivative version of Eq. (5) , we 

introduce the functions [18,19,31] 

φ(k, t) = 

+ ∞ ∑ 

m = −∞ 

e −iknd u n (t) and J(k ) = 

+ ∞ ∑ 

m = −∞ 

e −iknd J n , (6) 

where the parameter k is a wavenumber, d is the lattice spacing 

and J n is given by Eq. (2) . Inversely, the function u n ( t ) is related to 

φ( k, t ) through the formula 

u n (t) = 

∫ π

−π
e iknd φ(k , t) dk . (7) 

In the continuum approximation, i.e., u n ( t ) → u ( x, t ), with x = nd, 

when k → 0, relations (6) and (7) become 

φ(k, t) = 

∫ + ∞ 

−∞ 

e −ikx u (x, t) dx and 

u (x, t) = 

1 

2 π

∫ + ∞ 

−∞ 

e ikx φ(k , t) dk . (8) 

Applying all the above to Eq. (5) in the continuum approximation 

leads to 

i 
∂u (x, t) 

∂t 
= −J(0) u (x, t) −

∫ + ∞ 

−∞ 

d yd xK(x − y ) 
∂u (x, t) 

∂x 

− 2 D | u (x, t) | 2 u (x, t) , (9) 

where the Kernel K ( x ) is given by 

K(x ) = 

1 

π

∫ + ∞ 

−∞ 

e ikx G (k ) 

k 2 
dk, (10) 

with G (k ) = J(0) − J(k ) , J = ζ (s ) −1 , with the ζ− function be- 

ing given by ζ = 

∞ ∑ 

1=1 

n −s . For the specific case, where 2 ≤ s < 3, the 

function G ( k ) is in the form 

G (k ) = 

π J 0 

�(σ + 1) sin 

(
πσ

2 

) | k | σ , (11) 

where where �( σ ) is the �− function, with σ = s − 1 and �(σ + 

1) = σ�(σ ) . Therefore, given the possible values of s , the values 

of σ will be found between 1 and 2. Under such considerations, 

the continuum Eq. (9) takes the form 

i 
∂u (x, t) 

∂t 
= −J(0) u (x, t) − P σ

∂ σ

∂| x | σ u (x, t) − 2 D | u (x, t) | 2 u (x, t) , 

(12) 

where the coefficient P σ is given by 

P σ = 

π J 0 

�(σ + 1) sin 

(
πσ

2 

) . (13) 

The Riesz fractional derivative is given by Uchaikin [32,33] 

∂ σ

∂| x | σ u (x, t) = − 1 

2 π

∫ + ∞ 

−∞ 

| k | σφ(k , t) dk . (14) 

By making use of the gauge transfomation u (x, t) → u (x, t) e iJ 0 t , we 

finally find the equation 

i 
∂u (x, t) 

∂t 
= −P σ

∂ σ

∂| x | σ u (x, t) − Q| u (x, t) | 2 u (x, t) , (15) 

which is the NLS equation with space fractional derivative term. 

We have also fixed Q = 2 D, which is the nonlinearity parameter. 

Obviously, the dispersion term P σ is a function of the fractional- 

order parameter σ . However, the Riesz fractional derivative is also 

expressed as [32,33] 

∂ σ

∂| x | σ u (x, t) = −
(

− ∂ 2 

∂| x | 2 
)σ/ 2 

u (x, t) 

= − 1 

2 cos 
(

πα
2 

)[
D 

σ
+ u (x, t) + D 

σ
−u (x, t) 

]
, (16) 

where D 

σ+ u (x, t) and D 

σ−u (x, t) , are the left- and right-side 

Riemann–Liouville fractional derivatives of order σ , that are re- 

spectively given by [32,33] 
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