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Based on the chiral kinetic equations of motion, spin polarizations of various quarks, due to the 
magnetic field induced by spectator protons as well as the quark-antiquark vector interaction, are studied 
within a partonic transport approach. Although the magnetic field in QGP enhances the splitting of the 
spin polarizations of partons compared to the results under the magnetic field in vacuum, the spin 
polarizations of s and s̄ quarks are also sensitive to the quark-antiquark vector interaction, challenging 
that the different � and �̄ spin polarization is a good measure of the magnetic field in relativistic heavy-
ion collisions. It is also found that there is no way to obtain the large splitting of the spin polarization 
between � and �̄ at √sN N = 7.7 GeV with partonic dynamics.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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Understanding the properties of the quark-gluon plasma (QGP) 
is one of the main purposes of relativistic heavy-ion collision ex-
periments. In noncentral heavy-ion collisions, QGP is expected to 
be polarized perpendicular to the reaction plane [1–3] due to the 
large angular momentum as well as the strong magnetic field. The-
oretical studies predict that the strong vorticity and magnetic field 
lead to a series of chiral effects (see, e.g., Ref. [4] for a review) as 
well as the spin polarizations of hyperons and vector mesons [5–8], 
which are experimentally measurable through their decays. On the 
experimental side, continuous efforts have been made on measur-
ing the spin polarization of these particles [9–12]. In the collision 
systems at higher energies with nearly zero baryon chemical po-
tential, shorter duration of the magnetic field, and smaller angular 
velocity, the spin polarizations of � and �̄ are found to be very 
small [9,11]. Recently, the finite spin polarizations of � and �̄ at 
lower collision energies have been observed experimentally [12], 
with the �̄ spin polarization slightly larger than that of �. Consid-
erable efforts have been devoted to understanding the polarization 
of � [13–17] but few of them try to address the different spin 
polarizations of � and �̄.

The studies in Refs. [13–17] attribute the hyperon polarization 
to the coupling to the vorticity field of the QGP, and the spin po-
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larizations of quarks and antiquarks are affected in a similar way. 
On the other hand, the vector potentials, including those from the 
quark-antiquark vector interaction and the electromagnetic field, 
are expected to be responsible for the different polarizations for 
� and �̄ at lower collision energies. Due to the finite baryon 
chemical potential, quarks and antiquarks are affected by differ-
ent spin-dependent interactions in the baryon-rich matter. It was 
also proposed that the difference of the spin polarization between 
� and �̄ can be used as a measure of the magnetic field in rela-
tivistic heavy-ion collisions (see, e.g., Ref. [18]), with the strength 
of the later suffering from the uncertainty of the electrical conduc-
tivity of the QGP. The strength of the vector potentials, especially 
the magnetic field, is responsible for the occurrence of the chiral 
magnetic effect and the chiral magnetic wave.

In the present study, we investigate the different spin polariza-
tions of � and �̄ in Au + Au collisions at 

√
sN N = 39 and 7.7 GeV 

as a result of the vector potentials with partonic transport simu-
lations based on the chiral kinetic equations of motion. The vector 
potentials include the dominating magnetic field contribution from 
the spectator protons in the QGP with a temperature-dependent 
electrical conductivity, and the space component of the quark-
antiquark vector potential related to the net quark flux. We found 
that the s and s̄ quark spin polarizations, which are responsible 
for the � and �̄ spin polarizations via the coalescence model, 
are sensitive to the strength of both the magnetic field and the 
quark-antiquark vector potential. In addition, there is no way to 
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generate a large splitting of the spin polarization between � and 
�̄ at 

√
sN N = 7.7 GeV with partonic dynamics.

We generate the initial phase-space information of partons 
from a multiphase transport (AMPT) model [19], with the mo-
menta of initial partons from melting hadrons produced by the 
Heavy-Ion Jet INteraction Generator (HIJING) model [20], and 
their coordinates in the transverse plane (x, y) set to be the 
same as those of the colliding nucleons that produce their par-
ent hadrons. In order to take into account the finite thickness 
of the QGP medium at 

√
sN N = 39 and 7.7 GeV, the longitudi-

nal coordinates (z) of initial partons are sampled uniformly within 
(−lmN/

√
sN N , lmN/

√
sN N), where l = 14 fm is approximately the 

diameter of the Au nucleus, and mN = 0.938 GeV is the nucleon 
mass. Each parton is given a formation time related to the energy 
and the transverse mass of its parent hadron [19]. Afterwards, the 
evolution of these partons is described by transport simulations 
with elastic scatterings between all partons, with the isotropic 
cross section of 3 mb at 7.7 GeV and 10 mb at 39 GeV, as well as 
the partonic mean-field potentials. In our previous studies [21,22], 
these mean-field potentials are taken from a 3-flavor Nambu–Jona–
Lasinio (NJL) model, leading to almost zero dynamical mass for 
partons at high energy densities due to the scalar potential. Since 
we are only interested in the different spin polarizations of quarks 
and antiquarks due to vector potentials in the present study, we 
employ the Lagrangian with only the quark-antiquark vector inter-
action as well as the external magnetic field for massless partons 
as follows:

L = ψ̄γμ(i∂μ − Q Aμ
ext − 2

3
G V 〈ψ̄γ μψ〉)ψ. (1)

In the above, ψ = (ψu, ψd, ψs)
T is respectively the quark field for 

u, d, and s quark, Q = diag(que, qde, qse) represents respectively 
their electric charges, and Aμ

ext = (ϕ, �Am) is the external electro-
magnetic potential. The − 2

3 G V 〈ψ̄γ μψ〉 term represents the flavor-
singlet quark-antiquark vector interaction after the mean-field ap-
proximation [21,22]. The vector coupling constant G V , whose value 
affects the critical point of the chiral phase transition in the phase 
diagram [23–26], is chosen to be 0 or 1.1 times the scalar cou-
pling constant in the original NJL model. The vector density can be 
expressed as

〈ψ̄γ μψ〉 = 2Nc

∑
i=u,d,s

∫
d3k

(2π)3 Ei
kμ( f i − f̄ i), (2)

where Nc = 3 is the color degeneracy, Ei = k is the energy for 
massless quarks (antiquarks), and f i and f̄ i are respectively the 
phase-space distribution functions of quarks and antiquarks of fla-
vor i, which are calculated from the test-particle method [27] by 
averaging parallel events in the dynamical simulation. As in the 
original NJL model, the above momentum integration is cut off at 
750 MeV [26,40].

The Euler–Lagrange equation for each quark flavor i can be ob-
tained from the Lagrangian [Eq. (1)] as

[γ μ(i∂μ − Aμ)]ψi = 0. (3)

In the above, Aμ = (A0, −�A) contains the time and space compo-
nents of the vector potential expressed respectively as

A0 = bi gV ρ0 + qieϕ, (4)

�A = bi gV �ρ + qie �Am, (5)

with gV = 2
3 G V , ρ0 = 〈ψ̄γ 0ψ〉 and �ρ ≡ 〈ψ̄ �γ ψ〉 being respectively 

the time and space components of the vector density, the baryon 

charge number bi = 1 for quarks and −1 for antiquarks, and qi be-
ing the electric charge number of the quark species i. ϕ and �Am

are the scalar and vector potential of the real external electromag-
netic field, and their expressions in vacuum are respectively

ϕ(t,�r) = e

4π

∑
n

Zn
1

Rn − �vn · �Rn
, (6)

�Am(t,�r) = e

4π

∑
n

Zn
�vn

Rn − �vn · �Rn
, (7)

where Zn is the charge number of the nth spectator nucleon, �vn

is its velocity at the retarded time t′
n = t − |�r − �rn| when the ra-

diation is emitted, and �Rn = �r − �rn is the relative position of the 
field point �r with respect to the nucleon position �rn . Considering 
the finite electrical conductivity of the QGP, the vector potential of 
the electromagnetic field induced by a point particle with charge 
e moving in the +z direction at the velocity v along the trajectory 
z = vt + z0 is expressed as [28]

�Ae
m = ẑe

4σcon[(z − z0)/v] ×
exp

{ −b2

4{λ(t)−λ[−(z−z0)/v]}
}

4{λ(t) − λ[−(z − z0)/v]}
× θ[vt − (z − z0)]θ[(z − z0) − vt0]

+ ẑevγ

4π

+∞∫

0

dk⊥ J0(k⊥b)

× exp[−k2⊥λ(t) − k⊥γ |(z − z0) − vt0|]. (8)

In the above, t0 is the time when the QGP emerges, σcon(t) is the 
electrical conductivity of the QGP and λ(t) = ∫ t

t0
dt′/[σcon(t′)] is re-

lated to its time evolution, γ = 1/
√

1 − v2 is the Lorentz factor, b
is the distance between the field point and the point particle with 
charge e perpendicular to the z direction, J0 is the zeroth-order 
Bessel function of the first kind, and θ is Heaviside step func-
tion. Equation (7) is used to calculate �Am in vacuum before t0, 
and Eq. (8) is used to calculate �Am from the summation of �Ae

m af-
ter t0 when the QGP is produced. Since partons are continuously 
produced and σcon increases gradually from 0 to finite, t0 should 
in principle to be set as early as possible. In the present study 
we choose t0 ∼ 0.09 fm/c, before which there are too few partons 
leading to large fluctuations.

After decoupling the 4 × 4 Eq. (3) into the 2 × 2 Schrödinger 
equation, the single-particle Hamiltonian can be obtained as

H = c �σ · �k + A0, (9)

where �k = �p− �A is the real momentum of the particle with �p being 
its canonical momentum, c is the helicity of the particle, and �σ are 
the Pauli matrics. In the semiclassical limit by considering �σ as the 
expectation value of the particle spin, the canonical equations of 
motion from the above single-particle Hamiltonian are

�̇r = c �σ , (10)

�̇k = c �σ × �B + �E, (11)

�̇σ = 2c�k × �σ , (12)

where �B = ∇ × �A and �E = −∇ A0 − ∂ �A
∂t are the total space and time 

components of the vector potential, including the contributions 
from the real electromagnetic field originated from the spectator 
protons and the effective electromagnetic field originated from the 
quark-antiquark vector interaction. Using the adiabatic approxima-

tion �σ ≈ ck̂ − h̄
2k k̂ × ˙̂k that satisfies k̂ · �̇r ≈ 1 + O (h̄2), the chiral 

kinetic equations of motion can be obtained as [29–31]
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