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Compactifying the SM down to 3D or 2D one may obtain AdS vacua depending on the neutrino mass 
spectrum. It has been recently shown that, by insisting in the absence of these vacua, as suggested by 
Weak Gravity Conjecture (WGC) arguments, intriguing constraints on the value of the lightest neutrino 
mass and the 4D cosmological constant are obtained. For fixed Yukawa coupling one also obtains an 
upper bound on the EW scale 〈H〉 � �

1/4
4 /Yνi , where �4 is the 4D cosmological constant and Yνi the 

Yukawa coupling of the lightest (Dirac) neutrino. This bound may lead to a reassessment of the gauge 
hierarchy problem. In this letter, following the same line of arguments, we point out that the SM without 
a Higgs field would give rise to new AdS lower dimensional vacua. Absence of latter would require the 
very existence of the SM Higgs. Furthermore one can derive a lower bound on the Higgs vev 〈H〉 � �QCD
which is required by the absence of AdS vacua in lower dimensions. The lowest number of quark/lepton 
generations in which this need for a Higgs applies is three, giving a justification for family replication. We 
also reassess the connection between the EW scale, neutrino masses and the c.c. in this approach. The EW 
fine-tuning is here related to the proximity between the c.c. scale �1/4

4 and the lightest neutrino mass 

mνi by the expression �H
H � (a�

1/4
4 −mνi )

mνi
. We emphasize that all the above results rely on the assumption 

of the stability of the AdS SM vacua found.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is a frustrating fact how poor our present understanding 
of the origin of the different fundamental mass scales in Particle 
Physics is. Simplifying a bit, there are essentially three regions of 
scales in fundamental physics. There is a deep-infrared region in 
which there are only two fundamental massless particles, photon 
and graviton with the three neutrinos with masses in the region 
mνi � 10−3–10−1 eV, where one of the neutrinos could even be 
massless. Interestingly, this is also very close to the scale of the ob-
served cosmological constant �4 = (2.25 ×10−3 eV)4.1 The second 
region is that of the masses of most elementary particles which 
are around 10−3–102 GeV. These masses are dictated both by the 
value of the QCD condensate �QCD � 10−1 GeV and the Higgs vev 〈
H0

〉 = 246 GeV. Finally there is the Planck scale and presumably a 
unification/string scale somewhat below. We would like, of course, 

* Corresponding author.
E-mail addresses: eduardo.gonzalo@uam.es (E. Gonzalo), luis.ibannez@uam.es

(L.E. Ibáñez).
1 We are assuming here that the origin of dark energy is a 4D cosmological con-

stant.

to understand why the scales are what they are and what is the 
information that this distribution of scales is giving us concerning 
the fundamental theory. In particular it is difficult to understand 
why �4 and the EW scale are so small compared to the fundamen-
tal scales of gravity and unification. Also, the proximity of neutrino 
masses to �1/4 as well as the (relative) proximity of �QCD to the 
EW scale could be just coincidences or could be telling us some-
thing about the underlying theory.

A natural question is whether all these scales are independent 
or whether they are related or constrained within a more fun-
damental theory including quantum gravity coupled to the SM 
physics. Recently it has been pointed out that quantum gravity 
constraints could have an impact on Particle Physics [1–3]. The ori-
gin of these constraints is based on the Weak Gravity Conjecture 
(WGC) [4,5], see [6] for a review and [7–9] for some recent refer-
ences. A sharpened variation of the WGC was proposed by Ooguri 
and Vafa in [1] which states that a non-SUSY Anti-de Sitter stable 
vacuum cannot be embedded into a consistent theory of quantum 
gravity (see also [10]). This general statement, together with an 
assumption of background independence, may be applied to the 
Standard Model (SM) itself [1] implying that no compactification 
of the SM to lower dimensions should lead to a stable AdS vac-
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uum, if indeed the SM is to be consistently coupled to quantum 
gravity.

Interestingly, the exercise of compactifying the SM down to 3D 
and 2D was already done by Arkani-Hamed et al. [11,12] a long 
time ago, with a totally different motivation. They found that there 
may be 3D and 2D SM AdS vacua depending on the values of neu-
trino masses, via a radion potential induced by the Casimir effect. 
By assuming those results OV claimed that their sharpened WGC 
would imply the inconsistency of Majorana neutrino masses. In 
[2] a thorough analysis of this question was presented. It was fur-
ther found that the 4D cosmological constant is bounded below by 
the value of the lightest neutrino mass, providing an explanation 
for the apparent proximity of both quantities. Furthermore, it was 
shown that the same bound, for fixed �4 and Yukawa couplings, 
induces an upper bound on the Higgs vev, giving an explanation 
for the stability of the Higgs potential of the SM [2,3]. This bound 
implies that the gauge hierarchy stability may be a consequence of 
quantum gravity constraints for fixed values of �4 and the neu-
trino mass. We reassess this issue at the end of this note.

Before proceeding let us emphasize that the stability of the 
dangerous AdS vacua found from SM compactifications is a strong 
assumption. Indeed, working with an effective field theory it is 
impossible to know whether the theory has some unknown in-
stabilities in the UV. Undoubtedly, the embedding of the SM (or an 
extension of it) in a UV complete theory like string theory would 
make arguments about stability stronger. Lacking this, all the con-
straints obtained in this letter rely on the assumption that the AdS 
vacua found in the effective field theory are stable. The fact that 
this, admittedly, bold assumption leads to a number of intriguing 
results and constraints, makes this assumption worth exploring.

Apart from the possible mentioned instabilities in the UV, there 
may be still some sources of instabilities at the effective field the-
ory level. That is the case of the massless scalars associated to 
the SM Wilson lines, which may give rise to runaway scalar di-
rections [13]. Nevertheless, it turns out that those scalars are pro-
jected out from the spectrum in certain vacua, like toroidal Z N

2D Standard Model vacua [14], so that again one can recover the 
same bounds of the circle or toroidal compactifications. However, 
one also finds within this class of vacua examples in which the 
minimal SM necessarily develops AdS stable vacua, irrespective of 
the value of neutrino masses nor any other SM parameter [14]. 
Thus, if these WGC arguments are correct, and the AdS vacua 
are indeed stable, the SM by itself would be in the swampland. 
Certainly, this does not mean that the observed SM is incompati-
ble with quantum gravity, since modifications BSM above the EW 
scale can render those AdS vacua unstable. Indeed this is what 
happens in a SUSY completion of the SM like the MSSM with 
appropriate discrete gauge symmetries. This is true in particular 
provided the U (1)B−L symmetry (or a discrete subgroup of it) is 
gauged at some scale [14]. In connection to this, note that the min-
imal 4D SM seems to have a second Higgs AdS vacuum at around 
〈H〉 � 1010−12 GeV. Thus, if this second AdS minimum exists and 
is stable, it would need some modification (like SUSY) at higher 
energies anyway.

In the present note we obtain new constraints on the Higgs vev 
by imposing the absence of lower dimensional SM AdS vacua. Of 
course, these constraints rely on the aforementioned assumptions 
that the minima found are indeed stable in the UV and that the 
SM action that we study is completed at high energies in such a 
way that the AdS vacua of [14] and the one already existing in 4D 
are either absent or unstable.

The new bounds we find here are independent from the neu-
trino bounds. We find that in order to avoid AdS vacua:

• A Higgs with non-vanishing vev and Yukawa couplings must 
exist.

• There is a lower bound on the Higgs vevs for fixed Yukawa 
couplings 〈H〉� �QCD.

• The minimum number of generations for which the existence 
of a Higgs is mandatory is three.

In deriving these conclusions we are setting fixed the values of the 
dimensionless couplings (Yukawa and gauge couplings) as well as 
the measured value of the cosmological constant. We discuss the 
combination of the above lower bound with the upper bound com-
ing from the absence of neutrino generated AdS vacua. We also 
rephrase the upper bound on neutrino masses as a constraint re-
lating the EW fine-tuning with the proximity between the c.c. and 
the neutrino mass scale.

2. A world with no Higgs is in the swampland

Let us consider first the fermion and gauge boson content 
of the SM (plus the graviton) with ng quark/lepton generations. 
In the absence of the Higgs, the theory has an (approximate) 
U (2ng)L ×U (2ng)R accidental global symmetry in the quark sector. 
This symmetry is spontaneously broken by the QCD condensate of 
the quarks down to U (2ng)L+R , generating a total of 4n2

g massless 
Goldstone bosons. Three of them become massive by combining 
with the W ± and Z bosons, which acquire masses given by:

mW = √
ng

g fπ
2

(2.1)

mZ = mW / cos θW, (2.2)

where ng is the number of generations and fπ is the Goldstone 
boson decay constant. In the physical QCD case with ng = 3 the 
latter is given for the pion by fπ = 93 MeV. More generally one 
has for the Goldstone boson decay constants fG � �QCD. One more 
Goldstone boson is expected to become massive due to the QCD 
anomaly, so that below the �QCD scale we are left with a total of 
4(n2

g −1) Goldstone bosons. In fact all of these are actually pseudo-
Goldstone bosons which get mass from electroweak corrections, 
see the discussion below. These masses appear at the one-loop 
level, so they are below the EW gauge bosons masses. We will 
take these masses into account in the numerical evaluations but 
we follow here the discussion as if they were actually massless to 
illustrate the counting of degrees of freedom which is relevant for 
the Casimir potential. In addition to the pseudo-Goldstones there 
are 4 more bosonic degrees of freedom from the massless photon 
and graviton, so that the number of light bosonic degrees of free-
dom below the QCD scale is NB = 4n2

g . The total fermionic minus 
bosonic degrees of freedom below �QCD is then

(N F − NB)<�QCD = 8ng − 4n2
g = 4ng(2 − ng) , (2.3)

where the fermionic degrees of freedom correspond to charged 
leptons and (Dirac) neutrinos (we are taking Dirac rather than Ma-
jorana neutrinos because the latter lead necessarily to AdS vacua, 
as shown in [2]). Note that above �QCD one has leptons and un-
confined quarks and then one rather has

(N F − NB)>�QCD = 32ng − 24 − 2 , (2.4)

where the 24 comes from the SM gauge bosons and the 2 from 
the graviton. The value of (N F − NB) is crucial since the Casimir 
potential of the radion upon compactification of the SM down to 
3D or 2D depends linearly on it. Since above the QCD transition it 
is always positive, an AdS minimum will develop if it is negative 
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