
Physics Letters B 786 (2018) 278–282

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Casimir effect for mixed fields

M. Blasone a,b, G.G. Luciano a,b, L. Petruzziello a,b,∗, L. Smaldone a,b

a Dipartimento di Fisica, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
b INFN, Gruppo collegato di Salerno, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 September 2018
Accepted 3 October 2018
Available online 5 October 2018
Editor: N. Lambert

We analyze the Casimir effect for a flavor doublet of mixed scalar fields confined inside a one-
dimensional finite region. In the framework of the unitary inequivalence between mass and flavor 
representations in quantum field theory, we employ two alternative approaches to derive the Casimir 
force: in the first case, the zero-point energy is evaluated for the vacuum of fields with definite mass, 
then similar calculations are performed for the vacuum of fields with definite flavor. We find that 
signatures of mixing only appear in the latter context, showing the result to be independent of the 
mixing parameters in the former.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The concept of vacuum in quantum field theory (QFT) is as 
fascinating as puzzling. In several situations from both particle 
physics and condensed matter, the non-trivial condensate structure 
of the vacuum is crucial to explain a variety of both theoretical and 
observable phenomena [1–4]. In this connection, one of the most 
eloquent examples is provided by the Casimir effect [5], which 
occurs whenever a quantum field is enclosed in a finite region; 
such a confinement gives rise to a net attractive force between the 
boundaries, the entity of which is closely related to the nature of 
the vacuum itself [6].

In line with these findings, in Refs. [7,8] it was shown that 
vacuum also plays a central rôle within the framework of flavor 
mixing and oscillations in QFT. In Refs. [7], in particular, it was 
found that the vacuum for fields with definite mass (mass vacuum) 
is unitarily inequivalent [9,10] to the one for fields with definite fla-
vor (flavor vacuum), as they are related by a non-trivial Bogoliubov 
transformation. In light of this, it is reasonable to expect that vac-
uum effects in the context of QFT mixing may, in principle, depend 
on which of these states represents the physical vacuum. This is 
indeed a matter of open debate [11]: an interesting test bench in 
this sense has been recently provided by the analysis of the weak 
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decay of accelerated protons (inverse β-decay) with mixed neutri-
nos [12–14].

Led by these considerations, here we analyze the Casimir ef-
fect for a system of two mixed scalar fields, showing that the force 
is sensitive to the choice of the vacuum state. In particular, we 
find that the result obtained using the flavor vacuum exhibits cor-
rections that explicitly depend on the mixing angle and the mass 
difference of fields, in contrast with the case of the mass vacuum.

We remark that, although limited to scalar fields in 1 + 1 di-
mensions, our analysis contains all the essential features of the 
problem, thus giving general validity to our results. We also stress 
that the local nature of the Casimir force prevents our calcula-
tions from being affected by the choice of a particular regulariza-
tion scheme. Such a characteristic is not present in other contexts, 
where effects of the flavor vacuum have been studied [15].

The paper is organized as follows: Sec. 2 is devoted to briefly 
review the derivation of the Casimir force for a massive scalar 
field in 1 + 1 dimensions. In Sec. 3, we analyze how the standard 
expression gets modified in the presence of mixed fields by per-
forming calculations on both mass and flavor vacua. Sec. 4 contains 
conclusions and an outlook for future developments. Throughout 
the paper, we use natural units and the metric in the conventional 
timelike signature.

2. Casimir effect for a massive scalar field

Let us start by deriving the Casimir force for a massive charged 
scalar field φ̂ in 1 + 1 dimensions (to this aim, we basically follow 
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the treatment of Ref. [16]). In this framework, the free Lagrangian 
density L̂ takes the form1

L̂ = ∂μφ̂†∂μφ̂ − m2φ̂†φ̂ , (1)

where m is the mass of the field.
The Dirichlet boundary conditions imposed by the presence of 

the Casimir plates read

φ̂(t,0) = φ̂(t, L) = 0 , (2)

with L being the distance between the two confining surfaces. 
These constraints only allow modes with momentum kn = πn/L
to give a non-vanishing contribution to the field expansion, yield-
ing

φ̂(t, x) = 1√
2L

∞∑
n = 1

sin knx√
ωn

[
ân e−iωnt + b̂†

n eiωnt
]
, (3)

where n = 1, 2, . . . and ωn =
√

k2
n + m2. Here ân (b̂†

n) are the usual 
annihilation (creation) operators of a particle (antiparticle) with 
momentum kn and frequency ωn . They are assumed to satisfy the 
canonical bosonic algebra[
ân, â†

n′
]

=
[

b̂n, b̂†
n′

]
= δnn′ , ∀n,n′, (4)

with all other commutators vanishing. The vacuum state is defined 
by

ân|0〉 = b̂n|0〉 = 0, ∀n . (5)

In order to compute the Casimir force, let us now evaluate the 
zero-point energy density of the field as

ε0 = 〈0|T̂00|0〉 , (6)

where T̂μν is the stress-energy tensor derived from the Lagrangian 
density Eq. (1) [17]. A straightforward calculation leads to

ε0 = 1

2L

∞∑
n = 1

ωn . (7)

Using the standard definition of Casimir force [6,18]

F0 = − ∂

∂L
(L ε0) , (8)

and exploiting a suitable renormalization scheme [16], we finally 
obtain the following finite expression for the net force between 
the plates:

F = −m2

π

∞∑
n = 1

[
K2(2mLn) − K1(2mLn)

2mLn

]
, (9)

where Kν(x) is the modified Bessel function of the second 
kind [19]. Notice that, in the limit m → 0, Eq. (9) correctly re-
produces the more familiar expression of the Casimir force for a 
massless field [6,16,18].

1 To simplify the notation, we shall omit the (t, x)-dependence of the field when 
unnecessary.

3. Casimir effect for mixed fields

Let us now generalize the above formalism to the context of 
field mixing. For this purpose, consider the following Lagrangian 
density describing two charged scalar fields with a mixed mass 
term [8]:

L̂ =
∑

σ=A,B

(
∂μφ̂

†
σ ∂μφ̂σ − m2

σ φ̂
†
σ φ̂σ

)
− m2

AB

(
φ̂

†
A φ̂B + φ̂

†
B φ̂A

)
,

(10)

where φ̂σ (σ = A, B) are the fields with definite flavor σ .
It is a trivial matter to check that the mixing transformations(

φ̂A

φ̂B

)
=

(
cos θ sin θ

− sin θ cos θ

)(
φ̂1

φ̂2

)
, (11)

allow to recast the quadratic form Eq. (10) into a diagonal La-
grangian density for two free charged scalar fields φ̂ j ( j = 1, 2) 
with mass m j :

L̂ =
∑
j=1,2

(
∂μφ̂

†
j∂

μφ̂ j − m2
j φ̂

†
j φ̂ j

)
, (12)

where the two sets of mass parameters mσ and m j are related by

m2
A = cos2 θ m2

1 + sin2 θ m2
2 , (13)

m2
B = sin2 θ m2

1 + cos2 θ m2
2 , (14)

and m2
AB in Eq. (10) is given by m2

AB = (m2
2 − m2

1) sin θ cos θ . The 
mixing angle θ is defined as tan 2θ = 2m2

AB/
(
m2

B − m2
A

)
.

Note that each of the two fields φ̂ j ( j = 1, 2) in Eq. (11) can be 
expanded as in Eq. (3). Thus, according to Eq. (5), one can define 
the vacuum for fields with definite mass (mass vacuum) as

ân, j|0〉1,2 = b̂n, j|0〉1,2 = 0 , ∀n, j = 1,2 . (15)

To derive the corresponding relation for fields with definite fla-
vor, it is worth rewriting Eq. (11) in terms of the mixing generator 
Kθ,μ(t) [20] as:

φ̂χ (t, x) = K −1
θ,μ(t) φ̂l(t, x) Kθ,μ(t) ,

(χ, l) = (A,1), (B,2) , (16)

where Kθ,μ(t) = Gθ (t) Iμ(t), with

Gθ (t) = exp

[
− iθ

L∫
0

dx
(
π̂1(t, x)φ̂2(t, x) + φ̂

†
2(t, x)π̂ †

1(t, x)

− π̂2(t, x)φ̂1(t, x) − φ̂
†
1(t, x)π̂ †

2(t, x)
)]

, (17)

and

Iμ(t) = exp

⎡⎣ ∞∑
n=1

∑
σ , j

ξn
σ , j

(
a†

n,σ (t)b†
n,σ (t) − bn,σ (t)an,σ (t)

)⎤⎦ .

(18)

Here π̂ j ≡ ∂tφ
†
j ( j = 1, 2) is the canonical momentum conjugate to 

the field φ̂ j , ξn
σ , j ≡ 1

2 log
(

ωn,σ

ωn, j

)
and ωn,σ =

√
k2

n + μ2
σ (σ = A, B).

For μA = m1 and μB = m2, one can easily check that Iμ(t) = 1, 
and the field expansions for definite flavor fields read
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