Accepted Manuscript

Magnetic ordering in the nano-laminar ternary Mn_2AlB_2 using neutron and X - ray diffraction

D. Potashnikov, E.N. Caspi, A. Pesach, A. Hoser, S. Kota, L. Verger, M.W. Barsoum, I. Felner, A. Keren, O. Rivin

PII:	\$0304-8853(18)32175-9
DOI:	https://doi.org/10.1016/j.jmmm.2018.09.078
Reference:	MAGMA 64360
To appear in:	Journal of Magnetism and Magnetic Materials
Received Date:	11 July 2018
Revised Date:	30 August 2018
Accepted Date:	22 September 2018

Please cite this article as: D. Potashnikov, E.N. Caspi, A. Pesach, A. Hoser, S. Kota, L. Verger, M.W. Barsoum, I. Felner, A. Keren, O. Rivin, Magnetic ordering in the nano-laminar ternary Mn₂AlB₂ using neutron and X - ray diffraction, *Journal of Magnetism and Magnetic Materials* (2018), doi: https://doi.org/10.1016/j.jmmm. 2018.09.078

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Magnetic ordering in the nano-laminar ternary Mn₂AlB₂ using neutron and X - ray diffraction

D. Potashnikov,^{a,b} E.N. Caspi,^{c,d} A. Pesach,^c A. Hoser,^e S. Kota,^d L. Verger,^d M. W. Barsoum,^d I. Felner,^f A. Keren^a and O. Rivin^{c,e}

Sep 2018

^a Faculty of Physics, Technion - Israeli Institute of Technology, Haifa 32000, Israel

^b Israel Atomic Energy Commission, P.O. Box 7061, Tel-Aviv 61070, Israel

^c Department of Physics, Nuclear Research Centre-Negev, P.O. Box 9001, Beer Sheva 84190, Israel

^d Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, United states

^e Helmholtz-Zentrum Berlin fur Materialen und Energie, Berlin, Germany

^f Racah Institute of Physics, Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract

The nano-laminar ceramic Mn_2AlB_2 belongs to the orthorhombic M_2AlB_2 system (M = Cr, Fe, Mn), in which Fe₂AlB₂ was shown to be ferromagnetic near room temperature. Herein, the magnetic state of $Mn_2Al^{11}B_2$ is investigated using magnetization, in the 5 to 360 K temperature range, X-ray diffraction in the 300 to 800 K range and neutron diffraction in the 1.6 to 300 K range. From the totality of our results we conclude that below ~ 390 K Mn_2AlB_2 becomes a canted antiferromagnet. The crystallographic unit cell is doubled along the c axis (i.e. a propagation vector of 0,0,1/2) and the ordered Mn magnetic moments are oriented either along the a or the b axes, with a magnetic moment reaching 0.71(2) μ_B per Mn atom at 1.6 K. This magnetic structure is in excellent agreement with, and contributes to the validity of the recently reported theoretical calculations for the (Fe_{1-x}Mn_x)₂AlB₂ system.

Keywords: antiferromagnetism; laminar structures; neutron diffraction; canting

I. Introduction

The magnetic properties of boride compounds have attracted scientific attention over the years. For example, Nd₂Fe₁₄B was found [1] to simultaneously exhibit high magnetic anisotropy and ordered magnetic moment. The binary transition metal (M) borides, M_nB_m , were shown [2–4], to order magnetically at relatively high temperatures (~ 600 K). While Fe₂B was shown [3] to be ferromagnetic Download English Version:

https://daneshyari.com/en/article/11026331

Download Persian Version:

https://daneshyari.com/article/11026331

Daneshyari.com