## Accepted Manuscript

Electronic state and concentration of  $Fe^{3+}$  in  $CuAl_{1-\ x}Fe_xO_2$  determined by magnetic measurements

Mina Aziziha, Ramon Beesley, Jay Magers, Navid Mottaghi, Mikel B. Holcomb, James P. Lewis, Mohindar S. Seehra, Matthew B. Johnson

| \$0304-8853(18)31832-8                      |
|---------------------------------------------|
| https://doi.org/10.1016/j.jmmm.2018.08.067  |
| MAGMA 64264                                 |
| Journal of Magnetism and Magnetic Materials |
| 14 June 2018                                |
| 16 August 2018                              |
| 23 August 2018                              |
|                                             |



Please cite this article as: M. Aziziha, R. Beesley, J. Magers, N. Mottaghi, M.B. Holcomb, J.P. Lewis, M.S. Seehra, M.B. Johnson, Electronic state and concentration of  $Fe^{3+}$  in  $CuAl_{1-x}Fe_xO_2$  determined by magnetic measurements, *Journal of Magnetism and Magnetic Materials* (2018), doi: https://doi.org/10.1016/j.jmmm.2018.08.067

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

## ACCEPTED MANUSCRIPT

### Electronic state and concentration of $Fe^{3+}$ in CuAl<sub>1-x</sub>Fe<sub>x</sub>O<sub>2</sub> determined by magnetic measurements

Mina Aziziha<sup>1</sup>, Ramon Beesley<sup>1</sup>, Jay Magers<sup>1,2</sup>, Navid Mottaghi<sup>1</sup>, Mikel B. Holcomb<sup>1</sup>, James P. Lewis<sup>1</sup>, Mohindar S. Seehra<sup>1</sup>, and Matthew B. Johnson<sup>1</sup>

<sup>1</sup>Department of Physics & Astronomy West Virginia University, Morgantown, WV 26506 <sup>2</sup>Department of Physics, Susquehanna University, 514 University Ave., Selinsgrove, PA 17870

#### ABSTRACT

CuAlO<sub>2</sub> is among several ternary delafossites in which the electronic bandgap is less than the optical bandgap due to Laporte selection rules. Because alloying is expected to provide band engineering in delafossites, we are investigating Fe-doped CuAlO<sub>2</sub>. Here, results from the detailed magnetic characterization of the CuAl<sub>1-x</sub>Fe<sub>x</sub>O<sub>2</sub> (x = 0.0, 0.01, 0.05, and 0.1) samples, prepared by a solid-state reaction of Cu<sub>2</sub>O, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub>, at 1,100 °C, are reported. X-ray diffraction (XRD) of the powder samples showed an expansion of the rhombohedral unit cell with increasing *x* showing that the larger Fe<sup>3+</sup> (r = 0.645 Å) is replacing the smaller Al<sup>3+</sup>ion (r = 0.535 Å). The analysis of magnetization (*M*) *vs*. temperature (*T*, from 2 to 300 K) data in terms of the Curie-Weiss law:  $M = CH/(T-\theta)$  confirms Fe<sup>3+</sup> as the electronic state of Fe with spin S = 5/2 (magnetic moment  $\mu = 5.9\mu_{\rm B}$ ) as determined from the Curie constant, *C*; this analysis also yields a negative  $\theta$  characteristic of an antiferromagnetic Fe<sup>3+</sup>-Fe<sup>3+</sup> exchange coupling and magnitudes of *x* in good agreement with the nominal values. The isothermal *M vs*. *H* (up to *H*= 90 kOe) data analyzed in terms of modified Brillouin function involving *H*/(*T*- $\theta$ ) support the results obtained from the *M vs*. *T* analysis. The small paramagnetism observed in undoped CuAlO<sub>2</sub> is related to the presence of a few percent of CuAl<sub>2</sub>O<sub>4</sub> impurity observed in XRD of the sample.

Key Words: Delafossites; Fe-doping; Magnetization; Antiferromagnetic exchange coupling;

Download English Version:

# https://daneshyari.com/en/article/11026335

Download Persian Version:

https://daneshyari.com/article/11026335

Daneshyari.com