Accepted Manuscript

Li₂SiO₃@Li₂SnO₃/SnO₂ as a high performance lithium-ion battery material

Shuai Yang, Jingyang Zhang, Qiufen Wang, Juan Miao, Chenli Zhang, Lin Zhao, Yanlei Zhang

PII: S0167-577X(18)31533-7

DOI: https://doi.org/10.1016/j.matlet.2018.09.144

Reference: MLBLUE 25012

To appear in: Materials Letters

Received Date: 30 August 2018
Revised Date: 22 September 2018
Accepted Date: 27 September 2018

Please cite this article as: S. Yang, J. Zhang, Q. Wang, J. Miao, C. Zhang, L. Zhao, Y. Zhang, Li₂SiO₃@Li₂SnO₃/SnO₂ as a high performance lithium-ion battery material, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.09.144

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Li₂SiO₃@Li₂SnO₃/SnO₂ as a high performance lithium-ion battery material

Shuai Yang, Jingyang Zhang, Qiufen Wang, Juan Miao*, Chenli Zhang, Lin Zhao, Yanlei Zhang

(Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical

Engineering, Medical College, Henan Polytechnic University, Jiaozuo, China, 454000)

Abstract: Li₂SiO₃@Li₂SnO₃/SnO₂ composite has been prepared through a hydro-thermal method.

The composite is with well crystalline and more pure when the doping content of Si powder is 0.3

g. The Li₂SnO₃ is a bulk structure with the diameter of 400 nm while Li₂SiO₃@Li₂SnO₃/SnO₂

possesses the bulk structure heaped together by several nanoparticles, which can relieve the large

volume change of the composite and then ensure the well cycling and rate properties. When

charged and discharged at the current density of 150 mA/g, the composite shows a high initial

discharge capacity of 1205.7 mAh/g.

Key words: lithium-ion battery, Li₂SnO₃, Li₂SiO₃, nanocomposites, energy storage and

conversation

1. Introduction

Lithium ion battery is widely used for its advantage of high safety, high energy density and

the property of environment-friendly [1, 2]. Li₂SnO₃ has been seen as a potential anode material

for lithium ion battery for its high theoretical capacity of >600 mAh/g [3], which is much higher

than that of the commercial anode material graphite (372 mAh/g) [4]. However, the disadvantage

of large volume change during cycling process (~300%) holds back its commercial application.

The large volume change means the damage of the electrode material, which can contribute to the

* Corresponding author: Qiufen Wang, Juan Miao. Tel.: +86 0391 3986820

E-mail address: grp2009wqf@163.com; miaojuan@hpu.edu.cn

Download English Version:

https://daneshyari.com/en/article/11026623

Download Persian Version:

https://daneshyari.com/article/11026623

<u>Daneshyari.com</u>