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A B S T R A C T

As many other glass formers do, bulk-metallic-glass (BMG) forming melts undergo a fragile-to-strong transition (FST), which is accompanied by a small but noticeable
peak in the specific heat cp. Because of this peak, the FST is sometimes interpreted as a smeared-out phase transformation. Finite-size scaling analysis of peaks in cp
allows the order of a phase transition to be accurately determined. This motivated us to study cp along with structural and dynamical properties of a ternary BMG
former (Zr0.606Cu0.29Al0.104) using computer simulations, in which the system size was varied in a well-controlled fashion. Our model system reproduces the typical,
almost discontinuous cross-over between non-Arrhenius to Arrhenius-type dynamics, which defines the FST. However, in contrast to the expectations for a phase
transformation, the larger the system the smaller the peak in cp. Other properties also reveal a size dependence, which is difficult to reconcile with the interpretation
of the FST being a (smeared-out) phase transformation resulting from the competition between different local structures.

1. Introduction

A feature of many glass formers is the existence of a transition
temperature, at which the temperature-dependent shear viscosity η T( )
and other dynamical properties cross over from a high-temperature,
non-Arrhenius dependence to a low-temperature Arrhenius-type de-
pendence [1–11]. Thus, relaxation times and viscosities are propor-
tional to − E k Texp( Δ / )B with a constant (apparent) energy activation
barrier at small temperatures T for so-called “strong” liquids, where EΔ
may still depend on the property and pressure but not on T. In contrast,
in the high-temperature, “fragile” liquid, EΔ generally increases no-
ticeably with decreasing temperature, potentially because of entropic
effects [12]. At the same time, the specific heat cp of fragile liquids
tends to exceed k3 B per atom – the value for any classical, harmonic
solid – by more than 50%, while strong liquids surpass it only by 15% or
less [13]. Thus, the fragile liquid changes its structure much more
substantially with T than the strong liquid, which can be the reason for
a cross-over in the dynamic behavior [13].

The fragile-to-strong transition is an omnipresent phenomenon not
only in BMG formers [8,9,14,15] but also in other classes of glass-
forming systems, for example, in tetrahedral network liquids including
traditional silicate melts [7,16–22]. FST-like phenomena have even
been observed outside thermal equilibrium, most notably in metastable,
supercooled water [23–31].

Multiple experimental [32,33] and theoretical [7,18,34] works have
attempted to unravel the nature of FSTs. In loose analogy to phase
transformations in crystalline solids, it was proposed that the

competition between different local structures could be at the root of
FSTs. In the simplest case, two competing local structures may have a
noticeable density difference [18,23,27,35–37]. Generally, the precise
nature of the structural differences between possible competing phases
has so far remained rather vague in the context of FSTs. Despite few
attempts [34], the concept of well-defined order parameters has not yet
been put forth to FSTs as successfully or as rigorously as for phase
transformations involving symmetry breaking [38]. Yet, the idea of
competing phases differing in structure has been proposed to apply to
the FST in BMG-forming melts [39] as well. It was even argued that the
FST in network glass formers [40] as well as in BMG-forming melts [32]
could be associated with an underlying lambda transition, which is
continuous (i.e., second order) rather than discontinuous (i.e, first
order). The perhaps most-promising theory to describe the dynamical
anomalies that occur at the FST is the mode-coupling theory (MCT)
[7,41,42], which is not considered here, because it does not explain the
existence of anomalies in thermal or structural properties at the FST.

All of the above scenarios, except for MCT, imply that the FST in
liquids is thermodynamic in nature, or, that it has at least a thermo-
dynamic aspect akin of phase transitions, as they occur, for example in
crystals. If this were true, the FST should be expected to become sharper
with increasing system size [38,43]. The reason for this claim is that
thermal fluctuations make small systems “peek” much more frequently
from the more stable phase into the less stable phase than large systems.
This is because the free-energy barriers to convert between the two
phases as well as their free-energy differences decrease with decreasing
system size. In fact, a transition can only be said to occur rigorously in
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the thermodynamic limit of infinite particle numbers → ∞N .
There have been surprisingly few, perhaps even no studies system-

atically addressing the question how system size affects the FST of a
given glass-forming melt. In this work, we attempt to close this gap by
running molecular-dynamics (MD) simulations of an appropriate model
system. Originally, we meant to mimic the alloy
Zr Cu Ni Al Nb0.585 0.156 0.128 0.103 0.028, because it exhibits a rather pronounced
peak in cp near the FST [33]. However, due to the lack of reliable po-
tentials for Ni and Nb in this alloy, we replaced Ni and Nb atoms iso-
electronically with Cu and Al atoms, resulting in the composition
Zr0.606Cu0.29Al0.104. While this substitution – or perhaps the imprecision
of the employed potentials – lead to a noticeable suppression of the
peak, all mentioned, generic features that commonly occur at FSTs
remained intact. Moreover, density, transition temperature, structure
factors, etc. turned out close to the experimental reference alloy, which
is why we feel confident that the simulation results are robust. Last but
not least, our simulations reveal how Zr0.606Cu0.29Al0.104 would behave
if interactions were slightly different than they are in reality. A general
understanding of the FST should certainly apply to such an alloy as
well.

The remainder of this paper is organized as follows: Model and
methods are sketched in Section 2. Section 3 contains the results and
some discussion. Conclusions are drawn in Section 4.

2. Model and methods

We model the alloy Zr0.606Cu0.29Al0.104 with an embedded-atom
potential, which was specifically designed for Zr-Cu-Al ternaries and
convincingly tested [44]. Simulations are run in the NpT ensemble
using LAMMPS [45] with system sizes ranging from =N 96 to

=N 8788. Pressure is controlled with a Nosé-Hoover chain [46] and
temperature with a Langevin thermostat [47].

In order to speed up the dynamics of the Zr and Cu subsystems in the
ternary alloy, the masses of both Zr and Cu were replaced with that of
the lightest atom in the system, i.e., Al. The substitution only affects the
vibrational and attempt frequencies but leaves structural, thermo-
dynamic, and even energy barriers in the configurational space un-
changed. This is because the Boltzmann factor of a classical system
factorizes into a kinetic and a configurational contribution. Thus, pre-
factors of relaxation times and viscosities are slightly reduced, however,
their temperature dependence remains unaffected.

The specific heat, which is a central observable in this work, is
calculated in two different ways: (i) from the enthalpy fluctuations at a
given temperature and (ii) from taking the numerical derivative of the
enthalpy H T( ) through finite differences. The two methods give similar
results when equilibration and observation times clearly exceed the
intrinsic relaxation time, but quickly deviate from one another other-
wise. In this work, we only report the specific heat down to those
temperatures, where both methods give similar results.

Note that unlike Monte Carlo (MC), MD suffers from (small) time-
step discretization errors. This leads to minor systematic errors in the
computation of cp, which furthermore slightly differ between the two
employed methods. We therefore ensured that the errors in cp remain
below k0.015 B per atom, which corresponds to 1% of the configurational
specific heat of a harmonic solid. The reason why we preferred MD over
MC is that MC produces intrinsically overdamped dynamics and that
MD samples phase space more efficiently than MC, at least as long as
the MC trial moves consist only of local moves.

3. Results and discussion

3.1. Dynamical properties: volume and energy relaxation time

A systematic study of BMG-forming melts revealed that the transi-
tion between a fragile and a strong liquid is a general feature of these
alloys [9]. It is also widespread in other classes of glass-forming melts

[1–3,7,11]. The cross-over from a non-Arrhenius to an Arrhenius-type
dependence at the FST is seen for different dynamic properties at the
same temperature. However, the apparent activation barrier

≡ ∂ ∂E τ βΔ ln / may depend on the property τ , which can be, for ex-
ample, the volume relaxation time (defined further below) or the shear
viscosity η. While experimentalists often measure the shear viscosity, its
computation is numerically demanding, because the respective esti-
mators require “expensive” second-order derivatives of the potential
energy to be taken and statistics are tedious to acquire.

Since our simulations are run in the NpT-ensemble, we measure the
volume autocorrelation function (ACF) instead. It is defined here as
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where ′V t( ) is the volume at time ′t . In Eq. (1), 〈…〉 indicates a time
average in thermal equilibrium and 〈 〉δV 2 the variance of the volume.
The ACF is defined such that ∞ =C ( ) 0VV and =C (0) 1VV . This allows a
mean volume correlation time to be defined as

∫≡
∞

τ C t dt( ) .VVV 0 (2)

This correlation time can also be associated with a relaxation time,
because for a small temperature or pressure change inducing a small
change VΔ in the mean volume, we observe that the relaxation obeys

〈 − 〉 =V t V C t V( ) (0) ( )·Δ ,VV (3)

once t has exceeded a few inverse Debye frequencies. This time, 〈…〉
denotes a disorder average over different random realizations. Since the
integral is dominated by large times, the minor differences between
volume ACF and volume relaxation function are not significant.

To make the integration in Eq. (2) numerically stable at large times,
we fit C t( )VV with a purely empiric, analytic function and performed the
integration over the fit function rather than over the original data. We
found
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to describe the volume ACF rather well, i.e., more accurately with the
same number of parameters than commonly used relaxation functions,
such as two superimposed stretched exponentials. In Eq. (4),
a τ β b t, , , ,s 1 and t2 are fit parameters. Examples of such fits are shown in
the inset of Fig. 1.

The main panel of Fig. 1 reveals that the apparent activation barrier

Fig. 1. Main figure: Volume relaxation times τV as a function of reduced inverse
temperature ∗T T/ . The FST temperature ∗T is estimated to be =∗T 830 K. The
apparent activation energy for the volume relaxation is =EΔ 3.2V eV, which is
proportional to the slope of the black line. The τ T( )V curve was fitted using Eq.
(5). Inset: Simulation data on the volume ACF at selected temperatures in-
cluding fits of the =N 8788 data to Eq. (4), from which τV was deduced.
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