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A B S T R A C T

As a simple and robust minimization algorithm with high efficiency, the fast inertial relaxation engine (FIRE)
method has been widely applied in various fields. Different from the viewpoint of previous reports, the present
study found out that integration formulations in the FIRE method have huge influence on its convergence
performance and capability of critical analysis. Specifically, the Forward Euler (FE) integration is found ill-suited
for all the trial applications due to the outdated velocity update; the Velocity Verlet (VV) integration shows
robust convergence and superior efficiency, but loses the ability of critical analysis; the Semi-implicit Euler (SE)
integration endows the FIRE method with the critical analysis ability as well as good efficiency, but its con-
vergence is conditional. It is also found that the FIRE method using a modified energy monitor shows more
robust convergence than using the original power monitor. Further investigation indicates that the SE in-
tegration combined with the energy monitor should be the first choice for the FIRE method in general molecular
statics simulations. These findings extend the capability of FIRE and provide practical suggestions for selecting
minimization algorithms in molecular simulations.

1. Introduction

Energy minimization (EM) of atomistic systems is one of the most
common tasks in computational material sciences [1], solid-state physics
[2], chemistry and biology [3]. EM is also the core algorithm in many
simulation methods, such as molecular statics (MS) [4], coarse-grained
methods [5] and recently developed multi-scale methods [6]. Improving
the efficiency of EM, therefore, is of great importance to reduce the
computational cost in simulations. A variety of well-established mathe-
matical optimization methods, like the steepest decent (SD), conjugate
gradient (CG) and quasi-Newton method have been widely used [7,8].
When combined with multigrid method, EM shows the superior effi-
ciency in simulations of elastic deformation [9] and dislocation relaxa-
tion [10,11]. Some other EM methods are variants of molecular dy-
namics (MD) and have been applied in MS simulations, such as Quick-
Min (QM) [12] and Fast Inertial Relaxation Engine (FIRE) [13]. Among
the MD-like methods, it is reported that FIRE is significantly faster than
standard implementations of CG method and often competitive with the
more sophisticated quasi-Newton schemes typically in ab initio calcula-
tions. The robustness and versatility in critical point analysis also make
FIRE more intriguing than other EM methods.

Due to its high efficiency, simplicity and low computational con-
sumption, FIRE has been implemented as an effective minimizer into
various simulation packages, such as LAMMPS [14], HOOMD-blue
[15,16], BigDFT [17] and EON [18], which play an important role in
the frontier research of material sciences. Rogan et al. adopted FIRE as
an efficient local minimizer to search for the global and local minimal
energy states of freestanding nanoclusters [19]. Fayon et al. utilized
FIRE to optimize geometry in HOOD-blue to study the formation me-
chanism of ultra-porous framework materials [20]. Hwang et al. used
FIRE to study bubble super-diffusion and soft glassy materials [21]. As
emphasized by Bitzek [13], integration formulation has little influence
on the FIRE method. However, our preliminary results indicate that
FIRE with the default integration formulation is much less efficient than
CG in LAMMPS package, which is inconsistent with the conclusion in
aforementioned work. Recently, a new structure relaxation algorithm
based on micro-canonical ensemble (NVERE) proposed by Yang et al. is
reported faster than FIRE in relaxing soft structures like graphene sheet
[22], which implies that FIRE is still worth further exploring in different
applications. Here in this work, we are focusing on the influence of
integration formulation on the performance of FIRE so as to extend its
capability and provide practical suggestions on general applications.
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2. FIRE method and integration algorithms

Fig. 1 shows the flow chart of FIRE when minimizing the energy of a
given system. Like QM, FIRE removes kinetic energy from the given
system conditionally to find a local minimal energy state. However, its
superiority over QM lies in two key aspects: velocity modification with
more inertia effect and adaptive time step by monitoring power state P
of the system. In an atomic system, let x be position vector, E(x) be total
potential energy, then F E x( )= is atomic force vector; v x= is
velocity vector. The power P is defined as P F v·= and used to monitor
whether the system goes toward the lower energy state or not. If P
becomes negative, the system will be frozen by setting v 0= to avoid
further uphill movement; and time step will be reduced by half in the
next iteration. While if P is positive, the system will go further with
increasing time step by 10% so as to promote the convergence rate. The
contribution of force in velocity modification, α, will also be adjusted
automatically during iterations.

The MD integration in Fig. 1 can be performed with different for-
mulations. Three commonly used expressions are Forward Euler (FE),
Semi-implicit Euler (SE) and Velocity Verlet (VV) as listed in Table 1.
One of the most popular MD simulation packages, LAMMPS [14], takes
FE as the only integrator for FIRE in the latest version. The difference of
integration formulations rests on how to update atomistic positions and
velocities. FE and SE use forces of the last and current step respectively
to update velocities. VV uses velocities and forces of the last step to
update positions, and then uses averaged forces of the last and current
step to update velocities. Given a system with N atoms, both FE and SE
are first-order integrator, and 3N vectors are required to store position,
velocity and acceleration data of the current step. VV is a second-order
integrator and needs extra N vectors to store acceleration data of the
last step.

In order to explore the influence of integration formulations on the
performance of FIRE, three typical minimization systems are in-
vestigated: (i) optimization of the two-dimensional (2D) spiral potential
energy function, which is the trial problem in the original FIRE paper
[13], (ii) relaxation of a 2D crystal atomic system which is a typical
problem in molecular simulations and (iii), propagation of a 2D edge

dislocation with atoms jumping over minor energy barriers. Results are
discussed in comparison with that of the conventional CG and the
limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) methods.

3. Results and discussions

3.1. Spiral-shaped potential energy function

With a corrugated and intricate landscape, the spiral-shaped po-
tential energy function (Eq. (1) offers a heuristic benchmark to compare
different minimization methods. The inset in Fig. 2(a) shows the
landscape of the function with the minimum point locating at the center
of the “disc”, and an initial guess near the edge is selected as the
starting point. Fig. 2(a) shows the evolution of the azimuthal angle θ in
Eq. (1) versus the number of function calls of different methods. Ob-
viously, LBFGS is always ahead of CG. FIRE with different integration
formulations present huge difference. FIRE using SE takes only 296
function calls to reach the minimum point, which is even faster than
LBFGS of 200 function calls. FIRE using VV is slightly slower than using
SE, and surpasses LBFGS after 230 function calls. FIRE using FE moves
to θ of only about π/12 after 296 functions calls, which is much slower
than CG and LBFGS. For the rate of change, SE and VV increase non-
linearly, whereas CG and LBFGS increase linearly. Although FIRE using
SE and VV are slower at the beginning, they show better efficiency than
CG and LBFGS overall.

The above difference can also be observed from their trajectories.
Fig. 2(b) gives the whole trajectory of SE and the partial trajectories of
FE, CG and LBFGS within the dashed box. SE moves almost along the
bottom spiral curve smoothly and perfectly, and each function call
makes a positive contribution to the minimization process. VV is
roughly close to SE, and the final difference comes from the 296th
iteration. Different from the former two integrators, FE moves with
random distances and wild directions which often deviates from the
bottom spiral curve and goes uphill. Each function call in FE makes less
or even negative contribution to the minimization process, so that the
efficiency is much worse than that of SE and VV. As for classical
minimization methods, LBFGS goes farther than CG in each iteration,

Fig. 1. Computational flow chart of the FIRE method in energy minimization of atomic systems.

Table 1
Details of integration formulations used in the work.

Formulations Position update Velocity update Storage
Forward Euler (FE) x x v tn n n1 = ++ v v a tn n n1 = ++ 3N
Semi-implicit Euler (SE) x x v tn n n1 = ++ v v a tn n n1 1= ++ + 3N
Velocity Verlet (VV) x x v t a tn n n n1

1
2

2= + ++ v v a a t( )n n n n1
1
2 1= + ++ + 4N
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