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A B S T R A C T

We propose an approach to materials prediction that uses a machine-learning interatomic potential to ap-
proximate quantum-mechanical energies and an active learning algorithm for the automatic selection of an
optimal training dataset. Our approach significantly reduces the amount of density functional theory (DFT)
calculations needed, resorting to DFT only to produce the training data, while structural optimization is per-
formed using the interatomic potentials. Our approach is not limited to one (or a small number of) lattice types
(as is the case for cluster expansion, for example) and can predict structures with lattice types not present in the
training dataset. We demonstrate the effectiveness of our algorithm by predicting the convex hull for the fol-
lowing three systems: Cu-Pd, Co-Nb-V, and Al-Ni-Ti. Our method is three to four orders of magnitude faster than
conventional high-throughput DFT calculations and explores a wider range of materials space. In all three
systems, we found unreported stable structures compared to the AFLOW database. Because our method is much
cheaper and explores much more of materials space than high-throughput methods or cluster expansion, and
because our interatomic potentials have a systematically improvable accuracy compared to empirical potentials
such as embedded atom model, it will have a significant impact in the discovery of new alloy phases, particularly
those with three or more components.

1. Introduction

Advances in computer power, improvements in first-principles
methods, and the generation of large materials databases like AFLO-
WLIB [1], OQMD [2], CMR [3], NOMAD [4], and Materials Project [5]
have enabled modern data analysis tools to be applied in the field of
materials discovery [6–8]. There have been growing efforts in compu-
tational search for materials with superior properties, including me-
tallic alloys [9–11], semiconductor materials [12], and magnetic ma-
terials [13]. In this work we consider the problem of predicting stable
phases in multicomponent alloys. A typical prediction algorithm con-
sists of sampling structures across the configurational space and eval-
uating their energies. The sampling is done by searching through
structures that are either selected from some carefully assembled pool
of possible structures, often called crystal prototypes [14], or are gen-
erated by some sampling algorithm, see, e.g., Refs. [15,16].

The evaluation of the energy of the structures in the pool is often
done with density functional theory (DFT). Even despite its favorable
accuracy/efficiency trade-off as compared to other quantum–mecha-
nical algorithms, the DFT calculations remain the bottleneck in

materials prediction workflows, making an exhaustive search im-
practical. Machine learning (ML) for materials prediction has the po-
tential to dramatically reduce the number of quantum-mechanical
calculations performed and thus reduce the computational expense of
predicting new materials via computation. The reduction of the com-
putational time is achieved by constructing a surrogate model that
“interpolates” the quantum-mechanical training data and makes sub-
sequent energy evaluations much faster (by orders of magnitude). This
is similar in spirit to the cluster expansion method which has been
broadly used in different materials discovery applications [17–19,12].
Cluster expansion is quite successful when the stable structures are
derivatives of a particular structure (fcc, bcc, etc.) but is not useful
when this is not the case. Its accuracy also converges slowly when
atomic size mismatch is not negligible [20]. Additionally, more classical
machine-learning algorithms such as decision trees [21], support vector
machines [22], and other ML algorithms [23,24] have been tried.
Surrogate models such as the cluster expansion and standard machine
learning approaches do not have the broad applicability and excep-
tional accuracy of the moment tensor potentials-based [25] approach
we demonstrate here.
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The two important features of our approach are a completely gen-
eral form for the interatomic potentials and an active learning algo-
rithm for generating and refining the training set. In this work we ex-
tend the approach [26] for predicting the structure of a single-
component material. In our approach, a ML model reproduces DFT for
off-equilibrium structures that are not restricted to any lattice. Fur-
thermore, the model learns the DFT interaction actively (on-the-fly)
while equilibrating the candidate structures, completely automating the
construction of the training set. Thus, structural optimization of the
training structures can be performed via the interatomic potentials,
rather than via DFT, further accelerating the construction of the
training set.

Our method is based on moment tensor potentials (MTPs [25]) and
the active learning algorithm [27]. Namely, we solve the following
problem: given a set of elements, find the most stable structures (in the
sense of lying on the convex hull of formation enthalpies) consisting of
these elements, each characterized by composition, unit cell geometry
and atomic positions within the unit cell. In this work we extend the
interatomic potential [25] and active learning algorithm [27] to handle
atomistic configurations with multiple types of atoms, similarly to the
approach used in cheminformatics [28]. The differences between the
algorithms from Ref. [28] and this work include that (1) we need de-
rivatives of the energy, whereas in Ref. [28] we needed only the energy
(or other predicted properties); and (2) that in Ref. [28] we were
concerned with the selection from a finite set of predefined structures,
whereas in this work we need to solve the problem predicting the en-
ergy with a fitted potential and assembling the training set used for the
fitting at the same time (in other words, exploring the potential energy
landscape and constructing the training set at the same time).

The idea of applying neural networks, as a broad class of machine-
learning algorithms, to constructing interatomic potentials was pio-
neered in Ref. [29]. Application of Gaussian process regression, another
class of machine-learning algorithms, was then proposed in Ref. [30].
The promising results obtained in these works have motivated many
research groups to pursue this research direction [31–50,25,51].
However, the application of such algorithms to the problem of materials
prediction has proven difficult since following such a methodology
requires one to collect all the representative structures in the training
set which is as hard as predicting materials structure itself. In our view,
it is the active learning [27,26,33,52,53] that paves the way for ma-
chine-learning interatomic potentials to accelerate computational ma-
terials discovery.

This paper is organized as follows: in Section 2 we introduce the
algorithms we use, including the moment tensor potentials (Section
2.1), active learning (Section 2.2), and the “relaxation while learning
on-the-fly” algorithm (Section 2.3). In Section 3 we test the proposed
algorithm on predicting the stable structures of the Cu-Pd, Co-Nb-V,
and Al-Ni-Ti systems and discuss the performance of our algorithm. In
particular, we compare our results to those obtained by high-
throughput DFT calculations as reported in the AFLOW database
[10,1]. In all three systems we have discovered new structures below
the reported convex hull of ground-state structures. Finally, in Section 4
we make concluding remarks.

2. Methodology

2.1. Machine-learning potentials

We use the moment tensor potentials (MTPs) for approximating a
quantum-mechanical energy. The potential is parametrized by a set of
parameters that are found from minimizing the loss functional ex-
pressing that the predicted energy E is close to the reference quantum-
mechanical energy Eqm:

=L E x E x( ) ( ( , ) ( )) min,
j

j j( ) qm ( ) 2

(1)

where x j( ) are the configurations in the training set and E x( )jqm ( ) are
their reference energies.

Our model is local, which we enforce by partitioning the energy, E,
into the contributions, V, of individual atomic neighborhoods. To define
a neighborhood of the ith atom, we let rij be the position of jth atom
relative to the ith atom (thus, rij is a vectorial quantity) and zj be the
type of the jth atom. Then ni is the collection of rij and zj, and

n=E x V( ) ( )i i . The locality of the model is expressed by the re-
quirement that V does not depend on atoms that are farther from i than
some cutoff distance Rcut, which is usually around 5 Å. An illustration of
an atomic neighborhood is sketched in Fig. 1. Mathematically, each
atom in the neighborhood introduces four degrees of freedom, on which
ni depends: these are three coordinates in Euclidean space, and a dis-
crete variable representing the chemical type. Typically, neighborhoods
include a few dozen atoms, which means that the function nV ( )i de-
pends on the order of hundred scalar variables. To somewhat reduce the
dimensionality, we embed all physical symmetries into nV ( ) so they
will not have to be learned by the model. These symmetries arise from
the isotropy and translational symmetry of the physical space, and from
the fact that the interaction between atoms does not depend on their
ordering (see Fig. 2).

As in the work [25] devoted to the single-component moment tensor
potentials, nV ( ) is linearly expanded through a set of basis functions B :

n n=V B( ) ( ).
(2)

The basis functions, in turn, depend on the set of moment tensor
descriptors

n = …r r rM f z z( ) , , ,µ i
j

µ ij i j ij ij,

times (3)

where the index j enumerates all the atoms in the neighborhood ni. The
functions rf z z( , , )µ ij i j depend only on the interatomic distances and
atomic types, therefore we call them radial functions. The terms

…r rij ij contain the angular information about the neighborhood ni
and are tensors of rank . We next explain how to construct the basis
functions from the moment tensor descriptors, following which we
present a simple illustration of the structure of the descriptors and basis
functions.

The functions nB ( )i enumerate all possible contractions of any
number of nM ( )µ i, yielding a scalar. Note that nM ( )µ i, are invariant, by
construction, with respect to translations of the system and permuta-
tions of equivalent atoms. Their scalar contractions are invariant with
respect to rotations of the neighborhood. Thus the resulting function

Fig. 1. Partitioning scheme: energy E is composed from contributions Vi of in-
dividual neighborhoods ni. The neighborhood ni of the ith atom is described by
the relative position of neighboring atoms, rij, and the types of atoms zj (I or II
in this illustration).
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