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A B S T R A C T

We discuss the deep topological reasons why dislocation quadrupoles should be used for the construction of
dislocations containing edge components. We demonstrate that contrary to all other currently used methods, this
approach exactly preserves the topology of the order parameter field (atomic displacements in a crystal with
defects relative to a defect-free crystal) of a dislocation-free crystal with periodic boundary conditions even for
small simulation volumes and, thus, restores the verity of the material frame indifference principle, broken in
other techniques. Using dislocation quadrupoles for edge and mixed dislocations, we have developed a careful
procedure for relaxation of atomic positions around a dislocation core which enables one to achieve arbitrary
low dislocation densities characteristic for real crystals. As a demonstration of the method capabilities, we have
constructed a simulation volume with as low dislocation density as 1.5·10 m14 2, which is realistic in deformed
crystals, and one can easily lower this value as desired. All details of dislocation construction process are ex-
plicitly specified, making it very easy to reproduce our results. FCC Al crystal is used as a test case.

1. Introduction

Since the realization of the crucial role dislocations play in metals
plasticity [1], a lot of efforts, both experimental and theoretical, have
been spent in attempts to understand the physical mechanisms under-
lying the phenomenon and its dependencies on stress, strain rate, and
temperature [2]. Qualitative predictive description of the plastic de-
formation process is an extremely complex task as it is influenced by the
physical phenomena proceeding at very different time and length scales
— starting from nanometers and fractions of nanosecond up to mac-
roscopic lengths and years (in the case of plastic deformation with slow
strain rate — creep). This is partially due to the fact that mechanisms of
plasticity include not only the motion of dislocations, but an interaction
of dislocations with point defects, such as vacancies and interstitials,
and obstacles — voids, precipitates, other dislocations, as well. Thus, to
understand the nature of plasticity, one has to bridge the gap between
microscopic and macroscopic scales, and for this purpose, models of
dislocation motion and their interactions with point defects for different
scales should be developed.

Various methods are used for dislocation modeling. They basically
fall into the three categories. The simplest and the first to appear were
continuous mechanics methods based on long-range force fields created
by dislocations [1] and the Peach-Koehler expression for the forces

acting on dislocations. This method though fast, efficient and viable at
the macro scale, is only applicable outside of the dislocation cores, thus
the atomic structure of a dislocation core is overlooked. At the same
time, as it has been demonstrated in [3], an atomic structure of a dis-
location core has a significant influence on dislocation mobility.

On the other pole of the scale lengths hierarchy are fully first-
principles quantum-mechanical methods accounting precisely for the
atomic positions around a dislocation core. Those methods are highly
precise but, unfortunately, limited to the number of atoms of about
1000, which is not sufficient for the investigation of dislocations motion
and can be used for the elucidation of the basic properties of dislocation
cores. There exist hybrid methods utilizing continuous approaches, like
Peierls-Nabarro, parameterized with the results of first-principles cal-
culations of -surfaces [4]. They still lack the atomic resolution ne-
cessary for obtaining quantitative results.

Perhaps the optimal trade-off between the precision and efficiency
of calculations in the area of dislocations modeling is provided by the
approaches based on molecular dynamics (MD). Using modern parallel
clusters it is feasible to model not only microscopic systems but also
mesoscopic, when the number of atoms may reach 109 and the simu-
lation times — tens of nanoseconds. Embedded Atom Model (EAM)
interatomic potentials employed for metallic [5] systems give quanti-
tative values of equilibrium lattice constants, elastic moduli and
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phonon spectra, comparable to those obtained with quantum-mechan-
ical first-principles approaches. Molecular dynamics results can be
further used for parameterization of Discrete Dislocation Dynamics
(DDD) methods, allowing for even larger simulation volumes with the
linear sizes up to tens of µm. Thus, a simple and efficient method for the
construction of an initial dislocation in a simulation volume is vital for
the modeling of dislocations motion and their interaction with point
defects.

In the process of dislocation construction, one should provide for
the following basic conditions to be satisfied. First, there are situations
when dislocations should not be placed too densely in a simulation
volume, as their mutual influence, due to the long range-force fields
produced by them, will distort the external stress applied to a simula-
tion volume. Second, any residual stresses remaining after a dislocation
has been constructed should be relaxed, as such stresses can distort the
picture of dislocation motion. Note that a Peierls stress in FCC metals
can as low as G10 5 , where G is a shear modulus [2]. This second re-
quirement is especially important if a simulation volume is of moderate
size which can be the case, for example, when one is interested in the
modeling of dislocations pile-up at grain boundaries. And finally, since
periodic boundary conditions are very popular in molecular dynamics
calculations, an algorithm of dislocations construction should provide
for the correct topology of the order parameter field (atomic displace-
ments in a crystal with defects relative to a defect-free crystal), when
periodic images are attached.

There are two approaches to the construction of dislocations de-
scribed in the literature. The earlier methods such as Rigid boundary
model (RBC) and Green's function boundary conditions (GFBCs) [6]
have serious limitations such as difficulty to achieve the motion of
dislocations or computational inefficiency due to the calculations of
long-ranged Green’s functions. The modern techniques usually use
periodic arrays of dislocations (PAD) [5].

Specific details of how PAD is realized may vary. In the first ap-
proach [7–9], the two halves of a simulation volume contain the
quantities of atomic planes differing by 1. After the relaxation, the
unstrained simulation volume has a wedge shape, and after making it
rectangular, residual stresses, different in the upper and lower parts of
the simulation volume, appear.

In another approach parts of atomic planes perpendicular to both
the Burgers vector and the glide plane are removed from a crystal with
the subsequent relaxation of atomic positions [10–12]. In [10,11] dis-
location dipoles are created, but the dislocations of opposite signs are
located strictly one above another, in the same plane. This results in the
number of atomic planes perpendicular to the Burgers vector being
different for various heights above and below the glide plane and may
lead to residual stresses in this direction, preventing construction of the
simulations volume periodic images. In [12] the two atomic half-planes
removed from the simulation volume are separated in the direction
along the Burgers vector, and the initial gap for the second dislocation
starts right where the gap for the first dislocation ends in the direction
perpendicular to the glide plane. But for some reason, the authors of
[12] refused to use periodic boundary conditions in the direction per-
pendicular to the glide plane and introduced 5Å gaps above and below
the simulation volume.

Besides the possible residual stresses, another serious problem en-
countered in the process of dislocations construction is the difficulty in
achieving realistic dislocation density. This is partially related to the
limitations of the computational hardware and partially to the fact that
optimization of a function of several hundred thousand or even million
variables (atomic positions), necessary for the construction of a po-
tential energy local minimum corresponding to a dislocation, is a very
hard task. The minimal dislocation densities obtained using current
methods of dislocations construction are rather high, and can be only
found in heavily deformed crystals. The values of dislocation density
(where they are specified, or can be deduced from the simulation box
dimensions) are 2·1016 m−2 in [10], 2.2·1015 m−2 in [12] and

1.7·1015 m−2 in [8]. Moreover, the procedure of relaxation applied to an
initial configuration to create dislocation is not described in detail
anywhere, whereas as it has been already mentioned, this task is not
trivial at all.

But perhaps the greatest deficiency of the majority of the existing
methods used for dislocation construction is that they violate the to-
pology of the order parameter field (atomic displacements in a crystal
with defects relative to a defect-free crystal) of a dislocation-free crystal
not only on the local scale, in the vicinity of dislocations, but on the
global scale as well. When using periodic boundary conditions, this
topology change will result in the violation of the material frame in-
difference principle. Thus, when introducing dislocations care should
be taken not to break the topology of the dislocation-free crystal order
parameter.

To overcome this deficiency, the authors of [13] suggested using
dislocation quadrupoles. Surprisingly, this brilliant idea got much less
attention than it deserves. Dislocation quadrupoles were used just oc-
casionally for construction of dislocations, and mostly for the screw
dislocations, where the above mentioned problems do not appear
[14–16]. In this paper, we elucidate the deep topological reasons why
using dislocation quadrupole is the preferred method of dislocation
construction if a dislocation contains an edge component. As we argue
in the current paper, using a single dislocation in a simulation volume
or even a dislocation dipole will not suffice for this purpose.

In the majority of research articles on dislocation dynamics simu-
lations, dislocations of pure type — either edge or screw are initially
introduced into a simulation volume. In real crystals, dislocations are of
the mixed type, possessing both edge and screw components. Therefore
some fine details of dislocation dynamics and their interaction with
defects, that depend on mutual orientations of Burgers vector and dis-
location line may be lost in simulations. Of the recent papers dealing
with mixed type dislocations, one can mention [17]. However in [17]
the value of dislocation density — 2.4·1015 m−2 is rather high, and using
dislocation dipole results in breaking the correct topology of the order
parameter.

Thus, it would be of high importance to devise an algorithm which
would provide an efficient, reliable and easily reproducible method for
dislocations construction, capable of addressing all the discussed issues,
that at the same time will enable one to obtain dislocation densities
characteristic for crystals, not just heavily deformed, but strain-free.
Such algorithm has been suggested in the current paper.

2. Method

2.1. Dislocation quadrupole

A dislocation with an edge component is a topological defect since it
implies the presence of extra or missing parts of atomic planes [18]. In
approaches where a single dislocation or a dislocation dipole is in-
troduced in a simulation volume, the number of planes along a dis-
location line (x-direction) and planes parallel to a slip plane (with the
normal along the z direction) is invariant relative to the positions in the
yz and xy planes respectively. On the contrary, the number of planes in
the y direction, perpendicular to the first two axes (in the case of a
purely edge dislocation the Burgers vector is aligned along this direc-
tion) depends on the position in the xz plane.

If one introduces an order parameter field =u r u r u r( ) ( ) ( )disl 0

equal to the atomic shifts in a deformed crystal relative to an ideal
crystal, and then keeps track of its values while circling around a dis-
location with an edge component, due to different numbers of atomic
planes passed by the left and right parts of such contour, the magnitude
of u r( )y will not return to its original value uy

start when one returns to the
starting point, but instead will acquire some additional uy. This effect
is illustrated in the left frame of Fig. 1. As one is moving along the left
or right parts of the contour, uy increases, and moving along the top
and bottom parts of the contour does not change uy. The z component
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