Accepted Manuscript

An experimental and DFT study on free radical scavenging activity of hesperetin Schiff bases

Anna Sykula, Agnieszka Kowalska-Baron, Aliaksandr Dzeikala, Agnieszka Bodzioch, Elzbieta Lodyga-Chruscinska

PII: S0301-0104(18)30805-X

DOI: https://doi.org/10.1016/j.chemphys.2018.09.033

Reference: CHEMPH 10201

To appear in: Chemical Physics

Received Date: 26 July 2018

Revised Date: 21 September 2018 Accepted Date: 22 September 2018

Please cite this article as: A. Sykula, A. Kowalska-Baron, A. Dzeikala, A. Bodzioch, E. Lodyga-Chruscinska, An experimental and DFT study on free radical scavenging activity of hesperetin Schiff bases, *Chemical Physics* (2018), doi: https://doi.org/10.1016/j.chemphys.2018.09.033

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

An experimental and DFT study on free radical scavenging activity

of hesperetin Schiff bases

Anna Sykula^{a*}, Agnieszka Kowalska-Baron^a, Aliaksandr Dzeikala^a, Agnieszka Bodzioch^b,

Elzbieta Lodyga-Chruscinska^a

^aInstitute of General Food Chemistry, Faculty of Biotechnology and Food Chemistry, Lodz

University of Technology, Stefanowskiego Street 4/10, 90-924 Lodz, Poland

^bCentre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza

112, 90-363 Lodz, Poland

*Corresponding author

E-mail address: anna.sykula@p.lodz.pl (A. Sykula)

Correspondence to: Institute of General Food Chemistry, Faculty of Biotechnology and Food

Chemistry, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Lodz,

Poland, Tel: +48426313417. Fax: +48426362860

Abstract

N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-Three hesperetin Schiff bases

methoxyphenyl)chromen-4-ylidene]thiosemicarbazide (HTSC), N-[2,3-dihydro-5,7-

dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]isonicotinohydrazide (HIN)

N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxy-phenyl)chromen-4-ylidene] and

benzhydrazide (HHSB) were synthesized and evaluated for their electronic and

physicochemical properties using experimental and theoretical methods. In order to determine

antioxidant activity of the above mentioned compounds a detailed kinetic study of hesperetin

analogues has been performed and comprehensive results have been reported with DPPH.

assay using UV-Vis and ¹H NMR spectroscopy. Using DPPH assay, the order of the

antioxidant activity increase was established as HTSC > HIN > HHSB > hesperetin. Based on

the theoretical DFT(B3LYP) calculations it was concluded that in polar solvents (methanol

Download English Version:

https://daneshyari.com/en/article/11026934

Download Persian Version:

https://daneshyari.com/article/11026934

<u>Daneshyari.com</u>