Accepted Manuscript

Full Length Article

Molten salt synthesis of oxygen-deficient SnO_2 crystals with enhanced electrical conductivity

Zhen-Kun He, Qiang Sun, Zhongning Shi, Kaiyu Xie, Ali Reza Kamali

PII: S0169-4332(18)32594-7

DOI: https://doi.org/10.1016/j.apsusc.2018.09.169

Reference: APSUSC 40473

To appear in: Applied Surface Science

Received Date: 4 June 2018
Revised Date: 18 June 2018
Accepted Date: 20 September 2018

Please cite this article as: Z-K. He, Q. Sun, Z. Shi, K. Xie, A. Reza Kamali, Molten salt synthesis of oxygen-deficient SnO₂ crystals with enhanced electrical conductivity, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.09.169

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Molten salt synthesis of oxygen-deficient SnO₂ crystals with enhanced electrical

conductivity

Zhen-Kun He^a, Qiang Sun^a, Zhongning Shi^{a, b}, Kaiyu Xie^a, Ali Reza Kamali^{a,}

^a School of Metallurgy, Northeastern University, Shenyang 110004, People's Republic of China

^b Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education),

Shenyang 110819, People's Republic of China

Email: ali@smm.neu.edu.cn

Abstract

Spiky polycrystalline SnO2 balls assembled from pyramid-shaped SnO2 nanocrystals with surface

oxygen vacancies were synthesized by a simple and facile in-situ molten salt oxidation method using

SnCl₂ as tin source and graphite as surface reductant. In this method, perfect SnO₂ nanocrystals are

first formed on the surface of graphite particles at 500°C. By increasing the processing temperature

to 700°C, the formation of surface oxygen vacancy defects was confirmed, supported by various

characterization methods including Raman and XPS spectroscopy. A sharp increase in the bulk

electrical conductivity of the samples was detected by exceeding the onset temperature

corresponding to the formation of oxygen deficient SnO₂ crystals, at which the conductivity of the

sample significantly outperformed that of commercial SnO₂ nanoparticles. The formation of oxygen

vacancies on SnO₂ crystals is thermodynamically studied, and suggested to occur by surface carbon

reduction of the crystals at sufficiently high temperatures. The enhanced electrical conductivity of

oxygen deficient SnO₂ crystals can lead to a wider application of tin oxides in advanced electrical

applications.

Key words: SnO₂ crystals; Oxygen vacancy; Molten salt; Electrical conductivity

1. Introduction

Tin oxide (SnO₂), as a wide band gap n-type semiconductor (E_g=3.6 eV at room temperature) is of

Download English Version:

https://daneshyari.com/en/article/11026976

Download Persian Version:

https://daneshyari.com/article/11026976

<u>Daneshyari.com</u>