Accepted Manuscript

Full Length Article

Three-Dimensional Ni-Co Alloy Hierarchical Nanostructure as Efficient Nonnoble-metal Electrocatalyst for Hydrogen Evolution Reaction

GH. Barati Darband, M. Aliofkhazraei, A. Sabour Rouhaghdam, M.A. Kiani

PII: S0169-4332(18)32610-2

DOI: https://doi.org/10.1016/j.apsusc.2018.09.204

Reference: APSUSC 40508

To appear in: Applied Surface Science

Received Date: 22 May 2018
Revised Date: 9 September 2018
Accepted Date: 22 September 2018

Please cite this article as: GH. Barati Darband, M. Aliofkhazraei, A. Sabour Rouhaghdam, M.A. Kiani, Three-Dimensional Ni-Co Alloy Hierarchical Nanostructure as Efficient Non-noble-metal Electrocatalyst for Hydrogen Evolution Reaction, *Applied Surface Science* (2018), doi: https://doi.org/10.1016/j.apsusc.2018.09.204

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Three-Dimensional Ni-Co Alloy Hierarchical Nanostructure as Efficient Non-noblemetal Electrocatalyst for Hydrogen Evolution Reaction

Gh. Barati Darband¹, M. Aliofkhazraei^{1*}, A. Sabour Rouhaghdam¹, M.A. Kiani²

- 1- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran, P.O. Box: 14115-143, Tehran, Iran
- 2- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran Iran

*Corresponding author: Tel.: +98-912-6905626, Fax: +98-21-66960664, E-mail address: maliofkh@gmail.com, khazraei@modares.ac.ir

Abstract

Hydrogen is an ideal energy carrier with ultrahigh energy value that is believed to be the best candidate for replacement for fossil fuel. Thus, fabrication of novel materials and structures for this purpose is one of the important challenges of our times. In this study, Ni-Co nanocones as new structure was fabricated by electrodeposition method in the bath containing crystal modifier and electrocatalytic activity of these structures for HER was studied in 1.0 M KOH solution. Scanning electron microscope (SEM), X-ray diffraction (XRD) method and Atomic force microscopy (AFM) were used for physical characterization. Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and Chronopotentiometry were used for electrocatalytic activity evaluations. Fabricated Ni-Co alloy nanocones exhibited an enhanced electrocatalytic activity for HER. Best electrocatalytic activity was obtained for alloy prepared at Ni/Co salts ratio of about 8, in which η_{10} = 107 mV, η_{20} =142 mV and η_{100} =198 mV. This remarkable activity is mainly attributed to the high surface area of the nanocones and also synergistic effect between Ni and Co while decreasing the bubble resistance as a result of fabrication of nanocones. Additionally, the Ni-Co alloy catalyst displayed good durability and affords long-term electrolysis without activity degradation. This study offers a facile fabrication method for in situ growth of 3-D

Download English Version:

https://daneshyari.com/en/article/11027025

Download Persian Version:

https://daneshyari.com/article/11027025

<u>Daneshyari.com</u>