Accepted Manuscript

Title: Preparation of cellulose nanofibers by

TEMPO-oxidation of bleached chemi-thermomechanical pulp

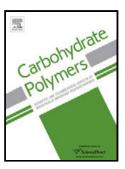
for cement applications

Authors: Mounir El Bakkari, Vivek Bindiganavile, Jose

Goncalves, Yaman Boluk

PII: S0144-8617(18)31111-1

DOI: https://doi.org/10.1016/j.carbpol.2018.09.036


Reference: CARP 14079

To appear in:

Received date: 25-6-2018 Revised date: 26-8-2018 Accepted date: 17-9-2018

Please cite this article as: Bakkari ME, Bindiganavile V, Goncalves J, Boluk Y, Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemithermomechanical pulp for cement applications, *Carbohydrate Polymers* (2018), https://doi.org/10.1016/j.carbpol.2018.09.036

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications

Mounir El Bakkari, Vivek Bindiganavile, Jose Goncalves and Yaman Boluk*

Department of Civil and Environmental Engineering, University of Alberta,

Edmonton, Alberta, T6G 2W2, Canada

Highlights

- TEMPO process removed 74% of pentosans and 80% of lignin from BCTMP.
- 1340% water retention was obtained by having 1.44 mmol/g carboxylates on CNF.
- Cellulose nanofibers were used in cementitious mixtures.
- CNF with carboxyl groups resulted in better flow control in wet cement paste.
- CNF reduced the crack growth in concrete.

Abstract

Hardwood bleached chemi-thermomechanical pulp (BCTMP) was converted to cellulose nanofibers by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) catalyzed oxidization along with mechanical defibrillation process. The TEMPO reaction was evaluated based on the

^{*} Corresponding author e-mail: yaman.boluk@ualberta.ca

Download English Version:

https://daneshyari.com/en/article/11027198

Download Persian Version:

https://daneshyari.com/article/11027198

<u>Daneshyari.com</u>