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A B S T R A C T

Presented is an efficient method for variance-based sensitivity analysis. It provides a general approach to transforming a sensitivity problem into one uncertainty
propagation process, so that various existing approximation techniques (for uncertainty propagation) can be applied to speed up the computation. In this paper,
formulations are deduced to implement the proposed approach with one specific technique named Univariate Reduced Quadrature (URQ). This implementation was
evaluated with a number of numerical test-cases. Comparison with the traditional (benchmark) Monte Carlo approach demonstrated the accuracy and efficiency of
the proposed method, which performs particularly well on the linear models, and reasonably well on most non-linear models. The current limitations with regard to
non-linearity are mainly due to the limitations of the URQ method used.

1. Introduction

In the context of Uncertainty Quantification and Management (UQ&
M), sensitivity analysis is used to identify the contribution of different
uncertainty sources on the total variance of system/model outputs [1].
This is particularly useful for large scale simulation or design problems,
where it is normally impractical to consider all the factors, especially at
the outset. Various techniques have been developed for sensitivity
analysis. Systematic reviews can be found in [1–4] . Among these
techniques, the variance-based method, also referred to as the Sobol’
Indices, is widely used. It has the benefits of being ‘global’ and ‘model-
independent’ [1]; where ‘global’ refers to analysing all the factors si-
multaneously over the entire region of interest, while ‘model-in-
dependent’ means that the approach is sufficiently general to handle
different problems, without the need of knowing the inner structure of
the models (i.e. models are treated as ‘’black-boxes”).

The development of variance-based sensitivity analysis dates back
to 1970s, when Cukier et al [5–7], Schaibly and Shuler [8], proposed
the method of Fourier Amplitude Sensitivity Test (FAST), in which the
Fourier Transformation and searching curves were used to decompose
the output variances. Similar problems were also referred to as ‘Im-
portance Measure’ by Hora and Iman [9,10], Ishigami and Homma
[11], and Saltelli et al [12,13]; or ‘Top/Bottom Marginal Variance’ by
Jansen [14]. In parallel, Sobol’ adopted the so-called ANOVA (Analysis
of Variance)-representation to decompose a function, so that the por-
tions of total variance caused by different factors can be formulated
separately [15–19]. The numerical implementation is based on Monte
Carlo Simulation along with multiple sampling sets (also referred as
pick-freeze scheme [20]). It was later pointed out by Saltelli that all
these methods calculate an equivalent statistical quantity [21], and that

with this regard, the Sobol's approach is the most general one [22].
Further research has been focusing on the computational efficiency,

which includes: improved sampling strategies (Sobol’ sequences [23],
Latin Hyper Cube [24], and Random Balance Design (RBD) [25–27]);
improved formulation of estimators (Jansen [28], Saltelli [29], Sobol’
et al [30]); approximation techniques (quadrature plus Latin Hyper
Cube [31], grid quadrature [32]); Bayesian approach based on Gaussian
processes (Oakley and O'hagan [33]); and Polynomial Chaos Expansion
(PCE) [34–40] (where the polynomial coefficients are used to obtain
the Sobol’ indices), etc.

In general, for most of the aforementioned techniques (except
[26,27]), the computational cost is related to the number of uncertainty
sources, and becomes very expensive for high dimensional problems.
Thus improving efficiency (i.e. the calculation speed), is still an area
requiring further research, especially for early stage computational
design, where the problem scale is large, and fast assessments are re-
quired.

In this research, a general approach is proposed to approximate the
sensitivity indices based on the formulation from Saltelli [1,2,29]. In
particular, we propose one implementation of the proposed approach,
using the Univariate Reduced Quadrature (URQ) method [41], which
was originally developed for uncertainty propagation.

The remaining part of the paper is structured as follows. Section 2
contains a background on variance-based sensitivity analysis and a brief
description of the URQ method. In Section 3, the general approach for
approximation is presented, followed by the detailed formulations in-
corporated with URQ, which include: the first order, second order, and
total effect indices. The method is evaluated in Section 4, using a
number of test-cases and is compared to the traditional (benchmark)
MCS approach. Finally conclusions and future work are presented in
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Section 5.

2. Background

The rationale and the derivation of the variance-based sensitivity
analysis method is given by Saltelli in [1,2,29]. In this section, only a
brief overview is presented, along with a short description of the URQ
technique, which forms a part of the method proposed in Section 3.

2.1. Variance-based sensitivity indices

Consider a computational model with n input variables:
=x x x x( , , , )n1 2 . It can be written in the form of a function:

= xy f ( ) (2.1)

Here, y is assumed to be the only output variable, while a vector
=y y y y( , , , )m1 2 can be used for multivariate output functions. In the

original definition of Sobol’ indices, each output is regarded as a se-
parate scalar and the calculation process should be repeated for each of
those. Recent research [42–49] has proposed several generalised sen-
sitivity indices which are dedicated to the case of multivariate outputs,
based on decomposition or covariance of the outputs. Such an extension
is beyond the scope of the current research. Also, the input variables are
assumed to be independent in this work. The reader is referred to
[32,50–52] for further information regarding sensitivity analysis with
correlated input variables.

2.1.1. First-order indices
A first-order index accounts for the portion of variance caused by

uncertainty from only one of the inputs. For instance the sensitivity
index of xi, can be defined as [2]:

= =S
V y E V y

V y
( ) ( ( ))

( )i
X x x Xi i i i

(2.2)

Here V(y) is the total variance, while =V y( )x x Xi i i is the conditional
variance with xi temporarily fixed as a constant Xi. The expectation

=E V y( ( ))X x x Xi i i i is with regard to the randomness of Xi (which is
equivalent to the randomness of xi, as Xi is a realization of xi).

By further expansion and derivation, Eq. (2.2) could be re-
formulated to the following forms:
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(2.5)

The reader is referred to [1,2] for more details on the derivation of
Eq. (2.4), and to [11,29] for the derivation of Eqs. (2.3) and (2.5). It
should be noted that in Eq. (2.5), the problem is converted into a single
loop expectation of the new function f*(x*i), which is defined by mul-
tiplying the original function f(x) with itself:

= +xf f x x x x f x x x x x x* ( * ) ( , , , , )· ( , , , , , ),i i n i i i n1 2 1 2 1 1 (2.6)

where x*i is the new input vector, which consists of n2 1 variables. In
this vector, xk and xk′ are considered as independent variables for each

=k n k i1, 2, , ; , but with the same Probability Density Function
(PDF). Also note that there is no xi′ in vector, x*i:

= +x x x x x x x x x x* [ , , , , , , , , , ]i i n i i n1 2 1 2 1 1 (2.7)

2.1.2. Second-order indices
A high order index captures the portion of variance caused by

particular combinations (interaction effects) of the input variables
[1,2]. For example, the second order index Sij refers to the interaction
effect caused by the combination of the ith and jth input variables. Note
that this interaction effect leads to a portion in the output variance,
while xi and xj are still independent inputs. In this research, only the
second order indices are considered, but the same principle can be
applied to calculate higher order indices as well.

Similar to the first order indices, Sij can be calculated by solving the
expectation of conditional variance with regard to two input variables.
It can be proven that this formulation also includes the first order ef-
fects [1,2], therefore the first order indices need to be subtracted:

=
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Some alternatives formulations [1,2] include,
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Using similar reasoning as applied to Eqs. (2.5)–(2.7), f**(x**ij) is
defined by multiplying the original function f(x) with itself, taking two
different sets of independent inputs, but this time sharing the same xi
and xj in both sets.

=
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Here x**ij is the corresponding input vector, consists of n2 2
variables. In this vector, xk and xk′ are considered as independent
variables for each = …k n k i j1, 2, , ; ( , ), but with the same PDF.
However there is no xi′ and xj′ in this vector.

= + +x x x x x x x x x x x x x** [ , , , , , , , , , , , , , , , , , ]ij i j n i i j j n1 2 1 2 1 1 1 1

(2.13)

2.1.3. Total effect indices
A total effect index accounts for the variable's first order effect and

all its interactions with other variables [1,2]. That is,
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Apart from calculating sums using Eq. (2.14), which may become
impractical when the number of inputs is high, this index is more
widely calculated by using a nested structure as:

= =S
E V y

V y
( ( ))

( )
,x X

i
T X x i ii i

(2.15)

where all variables except xi are first fixed for the calculation of the
conditional variance, and then are varied in the expectation loop. The
reader is referred to [1,2] for more rigorous mathematical derivation.
By expansion and further deduction, Eq. (2.15) could be transferred as
following alternatives,
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