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A B S T R A C T

(1) We consider a nonlinear generalization of the isotonic oscillator with an asymmetric potential. (2) Using a
symmetrization principle we construct a symmetric potential. (3) The period function in this potential has the
same value as in the original asymmetric potential. (4) It is amplitude dependent and expressible in terms of the
hypergeometric function.

1. Introduction

In recent times there has been a considerable amount of interest
in purely nonlinear oscillators for which the restoring elastic force is
proportional to 𝑠𝑔𝑛(𝑥)|𝑥|𝛼 , with 𝑥 representing the displacement and
𝛼 being any positive real number [1–5]. The presence of the signum
function ensures that the force is an odd function for all values of 𝛼.
The potential 𝑥4∕3 was examined in detail in [6]. In previous studies
of one-dimensional conservative oscillatory systems it was customary
to assume that the restoring force involves odd integer powers of the
displacement.

The reason for being interested in such purely nonlinear oscillators
is because of the potential for their applications in diverse areas of
science and engineering. For instance it is known that the stress–
strain properties of several materials used in aircraft manufacturing,
ceramic industries, composites, polyurethane foam etc are strongly
nonlinear and the usual polynomial approximations to the restoring
force is generally inadequate. Secondly the nonlinearity of the restoring
force is often due not to the physical properties of materials but to
geometrical consequences of the system such as its shape, loading
etc. For example helicoidal and conical springs made of materials
having linear properties arise due to their geometry and thereby cause
nonlinearity of the restoring force. An area where non-integer order
nonlinearity is of particular significance is in the design of micro-electro-
mechanical systems (MEMS), nano-electro-mechanical devices, vibra-
tion, acoustic and impact isolators. Mechanical microstructures such as
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sensors, valves, gears etc are particularly important in nanotechnology;
and it is plausible that the observed differences between the results of
simulation and actual measurements in experimental devices is most
likely due to errors in modeling caused by the assumption of integer
nonlinearity [7] (Chapter 2 and references therein).

From a theoretical point of view it is always desirable to have exact
or accurate analytical approximations for the solutions of such equa-
tions. Lyapunov showed that when the restoring force is proportional
to an odd integer power of the displacement then the solutions can be
expressed in terms of the Jacobi elliptic functions 𝑐𝑛 and 𝑠𝑛 respectively.

On the other hand for systems of the form

�̈� + 𝑐2𝛼𝑠𝑔𝑛(𝑥)|𝑥|
𝛼 = 0

or the allied system

�̈� + 𝑐2𝛼𝑥|𝑥|
𝛼−1 = 0

where 𝛼 is not necessarily a positive integer the solutions may be
described by Ateb functions [8] which are the inverses of the incomplete
Beta function. The term Ateb was coined by Rosenberg (Beta read
backwards). Senik [9,10] showed that the Ateb functions are actually
the solutions of the differential equations

�̇� = 𝑦𝛼 , �̇� = − 2
𝛼 + 1

𝑥,

namely 𝑥(𝑡) = 𝑠𝑎(1, 𝛼, 𝑡) and 𝑦(𝑡) = 𝑐𝑎(𝛼, 1, 𝑡) and that these may be
expressed in terms of the three-argument 𝑐𝑎 and 𝑠𝑎 functions. The
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inverse of the incomplete Beta function is defined by

𝐵(𝑎, 𝑏) = ∫

0≤𝑡≤1

0
𝑧𝑎−1(1 − 𝑧)𝑏−1𝑑𝑧,

and it may be verified that the inverse of the half of the incomplete
Beta function 1

2𝐵(
1
2 ,

1
𝛼+1 ) coincides with 𝑥(𝑡) on [− 1

2𝛱𝛼 ,
1
2𝛱𝛼] where

𝛱𝛼 ∶= 𝐵( 1
(𝛼+1) ,

1
2 ) denotes the usual Beta function. Furthermore it is

known that 𝑠𝑎(𝛼, 1, 𝑡) and 𝑐𝑎(1, 𝛼, 𝑡) are odd and even functions of 𝑡 ∈ R
having period 2𝛱𝛼 . They satisfy the identity 𝑠𝑎2(𝛼, 1, 𝑡) + 𝑐𝑎𝛼+1(1, 𝛼, 𝑡) =
1 and are referred to as the sine Ateb and cosine Ateb functions
respectively [11,12]. In addition their first derivatives are given by
𝑑
𝑑𝑡

𝑐𝑎(𝛼, 1, 𝑡) = − 2
𝛼 + 1

𝑠𝑎(1, 𝛼, 𝑡), 𝑑
𝑑𝑡

𝑠𝑎(1, 𝛼, 𝑡) = 𝑐𝑎𝛼(𝛼, 1, 𝑡).

The above identities clearly demonstrate their similarity with the
trigonometric sine and cosine functions. In fact just as the trigonometric
functions yield the normal mode vibrations of a linear system the
class of Ateb functions are solutions of normal mode vibrations of
certain nonlinear multicomponent systems [8]. The approximations of
Ateb functions by smooth elementary functions have been considered
in [13,14].

As a generalization of the potential 𝑥4∕3 an exact formula for the time
period of oscillation of the system

�̈� + 𝑐2𝛼𝑠𝑔𝑛(𝑥)|𝑥|
𝛼 = 0

subject to the initial conditions 𝑥(0) = 𝐴 and �̇�(0) = 0 is given by [12],

𝑇 =

√

8𝜋
𝑐2𝛼(𝛼 + 1)

𝛤
(

1
𝛼+1

)

𝛤
(

𝛼+3
2(𝛼+1)

) |𝐴|(1−𝛼)∕2,

with 𝛤 representing the Euler gamma function. This formula reduces to
2𝜋∕𝑐𝛼 when 𝛼 = 1 which corresponds to the linear harmonic oscillator.
The solution may be expressed by the three-argument Ateb 𝑐𝑎 function

𝑥 = 𝐴𝑐𝑎(𝛼, 1, 𝜔𝑐𝑎𝑡),

with frequency given by

𝜔𝑐𝑎 = |𝐴|(1−𝛼)∕2

√

𝑐2𝛼(𝛼 + 1)
2

.

It is evident that the frequency is in general amplitude dependent, unless
𝛼 = 1, which corresponds to the linear situation.

In this article we use a symmetrization procedure due to Mañosas
and Torres [15] to derive the time period of purely nonlinear oscillators.
Using their arguments we reproduce the result for the time period of the
system

𝑞 + 𝑐2𝛼𝑠𝑔𝑛(𝑞)|𝑞|
𝛼 = 0 where 𝑐𝛼 > 0,

obtained earlier by Cveticanin [4,5,7,11]. We then consider a general-
ization of the standard isotonic potential and propose a purely nonlinear
generalized isotonic system in a spirit similar to the generalization of
the linear harmonic oscillator stated above. The potential of a linear
harmonic oscillator (LHO) given by, 𝜔2𝑥2∕2, is a rational function
having a minimum at the origin 𝑥 = 0 and is symmetric. The LHO
is characterized by the fact that its time period is independent of the
amplitude. Although there are several instances of differential systems
exhibiting periodic motion, it is indeed rare to find systems displaying
periodic motion with an amplitude independent time period. Such
systems are said to be isochronous and apart from the LHO there is only
one isochronous system with a rational potential namely the isotonic
oscillator [16]. Its equation of motion given by, �̈� + 𝜔2𝑥 = 𝓁2∕𝑥3, is
nonlinear and admits the general solution

𝑥(𝑡) = (𝐴𝑥21 + 2𝐵𝑥1𝑥2 + 𝐶𝑥22)
1∕2,

where 𝑥1(𝑡) and 𝑥2(𝑡) are any linearly independent solutions to the
equation of the LHO having Wronskian 𝓁2 and where 𝐴,𝐵 and 𝐶 satisfy
the condition 𝐴𝐶 − 𝐵2 = 𝓁2. The equation may be derived from the

potential, 𝑉 (𝑥) = 𝜔2𝑥2∕2 + 𝓁2∕2𝑥2, which consists of two branches
separated by the asymptote 𝑥 = 0 with each branch being an asymmetric
curve displaying a minima. Physically a system governed by the isotonic
potential corresponds to the simplest two-body case of the 𝑁-body
translational invariant Calogero model [17] and is of great interest
in quantum optics [18] and in the theory of coherent states [19,20].
Our main result for the proposed generalized isotonic oscillator may be
stated as follows:

Theorem 1.1. For the purely nonlinear generalized isotonic oscillator
governed by a potential

𝑈 (𝑞) =
𝑐𝛼
8

(

|𝑞|
𝛼+1
2 − 1

|𝑞|
𝛼+1
2

)2
,

with 𝛼 being a positive real number, with equation of motion given by

𝑞 +
𝑐𝛼
8
(𝛼 + 1)𝑞𝛼 =

𝑐𝛼(𝛼 + 1)
8𝑞𝛼+2

, 0 < 𝑞 < ∞.

subject to initial conditions 𝑞(0) = 𝑞0 and �̇�(0) = 0, the time period, 𝑇 , is
given by

𝑇 = 4
√

𝑐𝛼(𝛼 + 1)

∞
∑

𝑚=0

∞
∑

𝑛=0

( 2
𝛼+1
2𝑚

)( 1
𝛼+1 − 1

2 − 𝑚
𝑛

)

𝑘2(𝑚+𝑛)𝛼 𝐵(𝑚 + 𝑛 + 1∕2, 1∕2).

The organization of the paper is as follows. In Section 2 we derive
the result for the time period of the purely nonlinear oscillator intro-
duced above, not only for the sake of completeness but to also outline the
general strategy which will be adopted to deal with potentials which are
not necessarily symmetric about the origin. This is followed by a brief
discussion of the standard isotonic oscillator which is an example of an
isochronous system in section 3 for which the potential is asymmetric.
By exploiting the results contained in [15] we show how an equivalent
(as far as the period function is concerned) symmetric potential may
be constructed in such a situation. This is followed in Section 4 by an
analysis of the period function of a generalized isotonic oscillator which
involves non-integer nonlinear dependence.

2. Time period of, 𝒒 + 𝒄𝟐𝜶𝒔𝒈𝒏(𝒒)|𝒒|
𝜶 = 𝟎, using symmetrization

argument

Consider the equation

𝑞 + 𝑐2𝛼𝑠𝑔𝑛(𝑞)|𝑞|
𝛼 = 0, (2.1)

with initial conditions 𝑞(0) = 𝑞0 and �̇�(0) = 0 and 𝑐𝛼 > 0. This 𝑐𝛼 can
be normalized to unity by rescaling the time. The expression for the
potential energy is given by

𝑈 (𝑞) =
𝑐2𝛼

𝛼 + 1
|𝑞|(𝛼+1)

For every 𝑞 there exists 𝜎(𝑞) such that 𝑈 (𝜎(𝑞)) = 𝑈 (𝑞) with 𝑞𝜎(𝑞) < 0.
We define the function 𝑔 by

𝑔(𝑞) = 𝑠𝑔𝑛(𝑞)
√

𝑈 (𝑞) = 𝑠𝑔𝑛(𝑞)
𝑐𝛼

√

𝛼 + 1
|𝑞|(𝛼+1)∕2. (2.2)

It is obvious that 𝑔(0) = 0 and 𝑔′(0) > 0. Moreover one can easily deduce
that

𝑔−1(𝑞) = 𝑠𝑔𝑛(𝑞)

(
√

𝛼 + 1
𝑐𝛼

|𝑞|

)2∕(𝛼+1)

(2.3)

We also observe that

𝑔(𝜎(𝑞)) = 𝑠𝑔𝑛(𝜎(𝑞))
√

𝑈 (𝜎(𝑞)) =
𝑠𝑔𝑛(𝜎(𝑞))
𝑠𝑔𝑛(𝑞)

𝑔(𝑞) = −𝑔(𝑞)

so that

𝜎(𝑞) = 𝑔−1(−𝑔(𝑞)).

This provides that relation for the explicit determination of 𝜎(𝑞) given
𝑞 [15]. It now follows that in the present situation we have 𝜎(𝑞) = −𝑞
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