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A B S T R A C T

The main purpose of our research is to find as many as possible the solutions of the equation of the general model
of nonlinear diffusion in an inhomogeneous medium and to establish their physical meaning and to apply the
obtained solutions to the description nonlinear diffusion processes in an inhomogeneous medium. To achieve of
this purpose the basic submodels (possessing nontrivial symmetry properties) of the general model are obtained
and researched. The formulas of the production of the new solutions for the equations of these submodels are
obtained. For these submodels all invariant submodels are found. The essentially distinct invariant solutions
(not connected with a help of the point transformations) describing these invariant submodels are found either
explicitly, or their search is reduced to the solving of the nonlinear integral equations. The physical meanings of
these solutions are established. Some of the 25 explicitly found solutions describe a diffusion process only for a
finite period of time, others — for an infinite period of time. Some solutions describe a nonlinear diffusion process
either with fixed or evolving ’’black holes’’, in the vicinity of which the concentration infinitely increases. The
presence of the arbitrary constants in the integral equations, that determine other 27 solutions opens up the new
opportunities for analytical and numerical study of the boundary value problems for the received submodels, and,
thus, for the original model of the nonlinear diffusion process. For such invariant submodels, we are studied the
diffusion processes, for which at the initial instant of the time at a fixed point either a concentration and rate of its
change, or concentration and its gradient are given. The solving of the boundary value problems describing these
processes reduces to the solving of nonlinear integral equations. The existence and uniqueness of the solutions of
these boundary value problems under certain conditions are established. A mechanical relevance of the obtained
solutions is as follows: 1) these solutions describe specific nonlinear diffusion processes in an inhomogeneous
medium, 2) these solutions can be used as test solutions in the numerical calculations, which perform in the
studies of the real diffusion processes, 3) these solutions make it possible to assess the degree of adequacy of a
given mathematical models to the real physical processes, after carrying out experiments corresponding to these
solutions, and estimating the resulting deviations.

The obtained results can be used to study the diffusion of substances, the diffusion of conduction electrons
and other particles, the diffusion of physical fields, the propagation of heat in an inhomogeneous medium.

1. Introduction

Many mathematical models of physics and continuum mechanics are
formulated in the form of linear and quasi-linear differential equations.
The model is a representation (scheme) phenomena more simple than
the original, but it reflects the basic properties of this phenomena.
Mathematical model is a description of the real scheme by mathematical
language. In the derivation of these equations, the mechanics and
physics used an invariance of the phenomenon under transformations,
as a consequence of the symmetries of space–time, which describe the
phenomenon. The set of transformations acts in the space–time around
us that allows to represent the geometric structure of the space. But
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symmetries may be hidden, they may be the result of physical properties
of the phenomena being modeled. The use of symmetry properties
allow correctly simulate the phenomena and to classify the submodels.
The symmetry analysis of the equations of the models of physics and
mechanics of continuous media is one of the most effective ways to
obtain quantitative and qualitative characteristics of the physical pro-
cesses. The role of transformation groups in the construction and study
of mathematical models on the example of the important mechanical
theories (nonlinear elasticity and fluids of grade n) was studied in [1].
The modern concept of the symmetry analysis is understood as the
fullest using of the group of transformations admitted by the equations
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of model primarily to obtain and research the exact solutions. Exact
solutions allow us to describe the specific physical processes. Exact
solutions can be used as test solutions in numerical calculations, which
perform in the studies of the real processes. Exact solutions allow us
to assess the degree of adequacy of a given mathematical model to the
real physical processes, after carrying out experiments corresponding to
these decisions, and estimating the deviations that arise.

Diffusion (from Latin ‘‘diffusion’’ - spreading) is the movement of a
fluid particles, leading to the transfer of substances and uniform con-
centration or to the equilibrium distribution of particle concentrations
in the medium. The diffusion phenomenon occurs not only for the
substances, but also for conduction electrons and other particles and
for the physical fields.

In this paper we study the general model of nonlinear diffusion in an
inhomogeneous medium. This model is described by the equation:

𝜕𝑢
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝜑 (𝑥)𝜓 (𝑢) 𝜕𝑢
𝜕𝑥

)

, (1)

where 𝑢 = 𝑢 (𝑡, 𝑥) is a substance concentration at the point 𝑥 ∈ (−∞,∞)
at the time 𝑡; 𝐷 = 𝜑 (𝑥)𝜓 (𝑢) is a diffusion coefficient characterizing a
diffusion rate; 𝜑 (𝑥) and 𝜓 (𝑢) are any smooth function that satisfy to the
condition

𝜑′ (𝑥)𝜓 ′ (𝑢) ≠ 0. (2)

This condition means that diffusion is nonlinear and medium is inho-
mogeneous.

The main purpose of our research is to find as many as possible the
solutions of the equation of the general model of nonlinear diffusion in
an inhomogeneous medium and to establish their physical meaning and
to apply the obtained solutions to the description nonlinear diffusion
processes in an inhomogeneous medium.

Notes. 1. Eq. (1) with the condition (2), also describes the nonlinear
process of the heat propagation in an inhomogeneous rod. In this case,
𝑢 = 𝑢 (𝑡, 𝑥) is the temperature at the point 𝑥 of the rod at the time 𝑡.

2. All results obtained for the Eq. (1), due to the transformations 𝑡 =
∫ 𝑎 (𝜏) 𝑑𝜏, 𝑥 = ∫ 1

𝑏(𝑦)𝑑𝑦, are carried over to the diffusion equation with the
nonstationary diffusion coefficient

𝜕𝑢
𝜕𝜏

= 𝑎 (𝜏) 𝑏 (𝑦) 𝜕
𝜕𝑦

(

𝑓 (𝑦) 𝑔 (𝑢) 𝜕𝑢
𝜕𝑦

)

,

Symmetry properties and the simplest invariant solutions of Eq. (1)
for some particular values of the functions 𝜑 (𝑥) and 𝜓 (𝑢) were studied
in many papers (see for example, [2–12]). We will carry out complete
classification of all invariant solutions of this equation for all the
functions 𝜑 (𝑥) and 𝜓 (𝑢) and indicate the physical meaning of these
solutions.

2. Basic submodels

We study the group properties of Eq. (1).

2.1. Group classification

The Eq. (1) is a first-order conservation law. This allows us to
introduce an additional function 𝑤 = 𝑤 (𝑡, 𝑥), such that Eq. (1) is written
in the form of an equivalent system of the first order:

𝜕𝑢
𝜕𝑥

= 𝑤
𝜑 (𝑥)𝜓 (𝑢)

, 𝜕𝑤
𝜕𝑥

= 𝜕𝑢
𝜕𝑡
. (3)

We will fulfill group classification of the system (3). We will solve the
problem of the group classification of this system using the algorithm
proposed in [13,14]. In contrast to the classical algorithm presented
in [15], this algorithm, firstly, avoids the considerable analytical dif-
ficulties associated with the analysis of the classifying equations that
arise when applying the algorithm from [15]; second, it substantially
reduces the number of calculations. This algorithm has been successfully

used in [10,11,16–21] for group classification of the various equations
of mechanics and mathematical physics.

An arbitrary element of this system is 𝒇 = (𝜑 (𝑥) , 𝜓 (𝑢)). Structure
equations of an arbitrary element are written as follows:

𝒇𝑡 = 0, 𝒇𝑤 = 0, 𝜑𝑢 = 0, 𝜓𝑥 = 0. (4)

The operator of generalized equivalence transformations of the system
(3) is defined as

𝜉0 (𝑡, 𝑥, 𝑢, 𝑤) 𝜕𝑡 + 𝜉1 (𝑡, 𝑥, 𝑢, 𝑤) 𝜕𝑥 + 𝜂1 (𝑡, 𝑥, 𝑢, 𝑤) 𝜕𝑢 + 𝜂2 (𝑡, 𝑥, 𝑢, 𝑤) 𝜕𝑤
+𝜻 (𝑡, 𝑥, 𝑢, 𝑤,𝒇 ) ⋅ 𝜕𝒇 ,

where 𝜉0, 𝜉1, 𝜂1, 𝜂2, 𝜻 are smooth functions of their variables.
The condition of invariance of the manifold determined by Eqs. (3),

(4) to this operator, with allowance [13,14] for the rule of extension
of this operator after splitting in terms of parametric derivatives yields
a system of the equations determining the generalized equivalence
transformations of the system (3) and the specializations of the arbitrary
element 𝒇 .

Solutions of this overdetermined system are all specializations of the
arbitrary element and the corresponding equivalence transformations of
the system (3). These equivalence transformations form the set of gen-
eralized equivalence transformations of the system (3). For the system
(3) the set of the generalized equivalence transformations of this system
coincides with the group of its universal equivalence transformations.
For the specializations of the arbitrary element we study the action of the
group of equivalences of the system (3) with this arbitrary element or,
more exactly, the action of the factor-group of this group of equivalences
by the kernel of the main groups of the system (3) on the system (3) with
this arbitrary element. As a result of this action, equivalent systems are
formed. To find all non-equivalent systems, we construct an optimal
system of subgroups for the considered group of equivalences or, more
exactly, for the factor-group of this group of equivalences by the kernel
of the main groups of the system (3). The equivalence transformations
acting on 𝒇 identically form the kernel of the main groups of the system
(3) with this arbitrary element 𝒇 , i.e., they are admitted by the system
(3) for all elements 𝒇 possessing the considered arbitrariness. In addition
to the kernel of the main groups, the system (3) admits each subgroup of
the group of equivalences under the condition that this subgroup acts on
the element 𝒇 identically. For each subgroup of the constructed optimal
system of subgroups, the element 𝒇 is specified under the condition that
this subgroup acts on the element 𝒇 identically. The final results of the
group classification of the system (3) under condition (2) we formulate
for the physically significant Eq. (1).

∙ The kernel of the main groups of Eq. (1) is generated by the operator

𝑋0 = 𝜕𝑡.

∙ For

𝜑 = 𝑥𝛼 ,
(

1
(ln𝜓)′

)′′
≠ 0, 𝛼 = const ≠ 0 (5)

the main group of Eq. (1) is generated by the operator 𝑋0 and operator

𝑋1 (𝛼) = (2 − 𝛼) 𝑡𝜕𝑡 + 𝑥𝜕𝑥

∙ For

𝜑 = exp 𝑥,
(

1
(ln𝜓)′

)′′
≠ 0 (6)

the main group of Eq. (1) is generated by the operator 𝑋0 and operator

𝑋2 = 𝑡𝜕𝑡 − 𝜕𝑥

∙ For
(

1
(ln𝜑)′

)′′
(ln𝜑)′′ ≠ 0, 𝜓 = 𝑢𝛽 , 𝛽 = const ≠ 0 (7)

the main group of Eq. (1) is generated by the operator 𝑋0 and operator

𝑋3 (𝛽) = −𝛽𝑡𝜕𝑡 + 𝑢𝜕𝑢
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