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A B S T R A C T

An equilibrium theory for elastic surfaces formed by two families of intextensible fibers is developed. This extends the work of Wang and Pipkin, which accounts for
the intrinsic flexural stiffness of the fibers, to include intrinsic twisting resistance. The constituent fibers behave mechanically like spatial Kirchhoff rods. These are
regarded as being continuously distributed on the surface and convected by the underlying surface deformation as inextensible material curves.

1. Introduction

Wang and Pipkin [1,2] developed a theory of fiber-reinforced elastic
surfaces that accounts for the flexural stiffness of the fibers at the
constitutive level. This extends a model for perfectly flexible fiber-
reinforced sheets introduced by Rivlin ( [3]; see also Chapter 7 of [4])
and further developed by Pipkin [5–7]. The extended model fits into
the framework of the second-gradient theory of elasticity [8–13]. Our
purpose in the present work is to enhance the Wang–Pipkin model by
including a constitutive sensitivity to fiber twist. In the Kirchhoff theory
of rods [14], twist is kinematically independent of the deformation
of the curve describing the trajectory of the rod. It may be treated in
the framework of the Cosserat theory of elasticity [15,16] in which a
rotation field accounts for the rate of change of the orientation of a rod
cross section – the twist – with respect to arclength along the rod. This
is partially coupled to the underlying deformation by requiring the unit
tangent to the curve describing the rod trajectory to be convected as a
material vector.

In the present work we assume the elasticae comprising the surface
to be pinned at their points of intersection in such a way as to allow them
to pivot freely about the evolving unit normal to the deforming sheet.
This constraint effectively means that the surface normal is embedded in
the fiber cross sections. Accordingly, fiber twist is ultimately determined
by the deformation of the underlying surface. In this way the relative
tractability of strain-gradient elasticity is preserved while accounting for
the physically important effects of fiber twisting resistance. A model of
this kind, without inextensibility constraints, was introduced in [17] to
describe the mechanics of woven fabrics. Associated numerical solutions
exhibiting unusual internal bending transition layers – corroborating a
prediction made in [2] – are described in [18,19], and some theoretical
aspects of the model are discussed in [20]. However, fiber inextensibility
introduces a number of unusual mathematical features that justify an
independent treatment.
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In Section 2 we recount the kinematical foundations of the model
in terms of the differential geometry of the fiber network, drawing on
results derived in [17,21] as needed. The basic constitutive framework
is developed in Section 3. There we introduce an areal strain-energy
function modeled after Kirchhoff’s rod theory. This is used to extract
the relevant response functions from a virtual-work statement. These
in turn are used, in Section 4, to obtain the equilibrium equations via
a variational argument. In Section 5, we use global force and moment
balances to aid in the interpretation of the various terms arising in the
theory. Comparison with the Rivlin–Pipkin theory for perfectly flexible
fibers is briefly discussed in Section 6, and finally, in Section 7, we
modify an example discussed in [1] to highlight the essential role played
by fiber twist in the buckling response of a rectangular sheet.

In contrast to [1], we adopt the general curvilinear coordinate
formalism of standard shell theory [22], to elucidate the underlying
tensorial character of the model.

2. Surface geometry and deformation

2.1. Surface geometry

We use convected coordinates 𝜃𝛼 ; 𝛼 = 1, 2, to label material points
of the lattice, regarded as a two-dimensional manifold. The function
𝐱(𝜃𝛼) furnishes position of a material point on a fixed reference plane
𝛺. Position of the same material point on the deformed surface 𝜔 is
denoted by 𝐫(𝜃𝛼). The latter parametrization induces the associated
tangent-basis elements 𝐚𝛼 = 𝐫,𝛼 ; the metric 𝑎𝛼𝛽 = 𝐚𝛼 ⋅ 𝐚𝛽 ; the dual metric
(𝑎𝛼𝛽 ) = (𝑎𝛼𝛽 )−1 and the dual tangent basis 𝐚𝛼 = 𝑎𝛼𝛽𝐚𝛽 . These in turn
yield the local orientation of 𝜔 in terms of its unit normal 𝐧, defined
by 𝐧 = 𝐚1 × 𝐚2∕ ||𝐚1 × 𝐚2|| . Here and henceforth a comma followed by a
Greek subscript is used to identify a partial derivative with respect to
the corresponding coordinate.
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The Gauss and Weingarten equations of surface theory are

𝐫,𝛼𝛽 = 𝛤 𝜆
𝛼𝛽𝐚𝜆 + 𝑏𝛼𝛽𝐧 and 𝐧,𝛼 = −𝑏𝛼𝛽𝐚𝛽 , (1)

where 𝛤 𝜆
𝛼𝛽 are the Levi-Civita connection coefficients – symmetric with

respect to interchange of the subscripts – induced by the coordinates on
𝜔, and 𝑏𝛼𝛽 is the symmetric covariant curvature tensor (the coefficients
of the second fundamental form).

The lattice is assumed to consist of two families of fibers that are
continuously distributed over the surface; thus, every material point lies
at the intersection of a pair of fibers, each modeled as a mathematical
curve. The unit tangents to the fibers on 𝜔 are denoted by 𝐥 and 𝐦, and
their counterparts on 𝛺 by 𝐋 and 𝐌. These admit the representations

𝐥 = 𝑙𝛼𝐚𝛼 , 𝐦 = 𝑚𝛼𝐚𝛼 and 𝐋 = 𝐿𝛼𝐞𝛼 , 𝐌 = 𝑀𝛼𝐞𝛼 , (2)

in terms of contravariant components, for example. Here 𝐞𝛼 are the
basis vectors induced by the coordinates on 𝛺 via 𝐞𝛼 = 𝐱,𝛼 , and 𝐞𝛼 are
their duals. The fibers are presumed to be convected as material curves,
implying [21] that

𝜆𝑙𝛼 = 𝐿𝛼 and 𝜇𝑚𝛼 = 𝑀𝛼 (3)

relating contravariant components only, where 𝜆 and 𝜇 are the fiber
stretches. The fiber shear angle 𝛾 on 𝜔 is defined by

sin 𝛾 = 𝐥 ⋅𝐦. (4)

We assume, as in [1], that the fibers form a uniform rectangular grid
on 𝛺 and that they remain inextensible in the course of deformation;
i.e., that 𝜆 = 𝜇 = 1. A number of general formulas developed in
[17,21] are needed in the present work. Their specializations to initially
orthogonal, inextensible fibers are recalled here. For example, the
natural tangent basis is [21]

𝐚𝛼 = 𝐿𝛼 𝐥 +𝑀𝛼𝐦, (5)

the areal stretch is

𝐽 = |cos 𝛾| , (6)

and the covariant surface curvature is

𝑏𝛼𝛽 = 𝜅𝑙𝐿𝛼𝐿𝛽 + 𝜅𝑚𝑀𝛼𝑀𝛽 + 𝜏(𝐿𝛼𝑀𝛽 +𝑀𝛼𝐿𝛽 ), (7)

where

𝜅𝑙 = 𝑏𝛼𝛽 𝑙
𝛼𝑙𝛽 and 𝜅𝑚 = 𝑏𝛼𝛽𝑚

𝛼𝑚𝛽 (8)

are the normal curvatures of the deformed fibers, and

𝜏 = 𝑏𝛼𝛽 𝑙
𝛼𝑚𝛽 (9)

is the torsion. This is not the conventional surface twist. The latter is
the off-diagonal term of the curvature matrix relative to an orthonor-
mal tangent basis on 𝜔. We elaborate on this distinction in the next
subsection.

The geodesic curvatures 𝜂𝑙 and 𝜂𝑚 of the fibers are defined by [21]

𝑙𝛼 𝐥,𝛼 = 𝜂𝑙𝐩 + 𝜅𝑙𝐧 and 𝑚𝛼𝐦,𝛼 = 𝜂𝑚𝐪 + 𝜅𝑚𝐧, (10)

with

𝐩 = 𝐧 × 𝐥 and 𝐪 = 𝐧 ×𝐦. (11)

We also have [21]

𝑚𝛼 𝐥,𝛼 = 𝜙𝑙𝐩 + 𝜏𝐧 and 𝑙𝛼𝐦,𝛼 = 𝜙𝑚𝐪 + 𝜏𝐧, (12)

where 𝜙𝑙 and 𝜙𝑚 are the so-called Tchebychev curvatures of the fibers.
It is well known that the geodesic curvatures are determined by the

surface metric. In the present specialization to fiber inextensibility and

a uniform rectangular lattice of fibers on 𝛺, the explicit expressions are
[17,21]

𝐽𝜂𝑙 = 𝐿𝛼(sin 𝛾),𝛼 and 𝐽𝜂𝑚 = −𝑀𝛼(sin 𝛾),𝛼 . (13)

Our further work is facilitated by introducing

𝐫∣𝛼𝛽 = 𝐫,𝛼𝛽 − 𝛤 𝜆
𝛼𝛽𝐫,𝜆, (14)

where 𝛤 𝜆
𝛼𝛽 are the connection coefficients on 𝛺 and (⋅)∣𝛼𝛽 is the second

covariant derivative with respect to the metric of 𝛺. The Gauss equation
(1)1 then furnishes

𝐫∣𝛼𝛽 = 𝑆𝜆
𝛼𝛽𝐫,𝜆 + 𝑏𝛼𝛽𝐧, (15)

where

𝑆𝜆
𝛼𝛽 = 𝛤 𝜆

𝛼𝛽 − 𝛤 𝜆
𝛼𝛽 . (16)

In [17] it is shown that this admits the fiber decomposition

𝐫∣𝛼𝛽 = 𝐿𝛼𝐿𝛽 (𝐠𝑙 + 𝜅𝑙𝐧) +𝑀𝛼𝑀𝛽 (𝐠𝑚 + 𝜅𝑚𝐧) + (𝐿𝛼𝑀𝛽 +𝑀𝛼𝐿𝛽 )(𝜞 + 𝜏𝐧),
(17)

where

𝐠𝑙 = 𝜂𝑙𝐩, 𝐠𝑚 = 𝜂𝑚𝐪 (18)

and

𝜞 = 𝜙𝑙𝐩 = 𝜙𝑚𝐪. (19)

The Tchebychev curvatures appearing in these expressions may
be determined by exploiting the symmetry of 𝑆𝜆

𝛼𝛽 with respect to
interchange of the subscripts. In [17] it is demonstrated that this leads
to

𝐽𝜙𝑙 = 𝐽𝜂𝑚 +𝑀𝛼(sin 𝛾),𝛼 and 𝐽𝜙𝑚 = 𝐽𝜂𝑙 − 𝐿𝛼(sin 𝛾),𝛼 , (20)

and hence, with (13), to the conclusion that the curvatures vanish
identically: 𝜙𝑙 = 𝜙𝑚 = 0. Thus,

𝜞 = 𝟎, (21)

identically. These conclusions do not follow in the case of fiber extensi-
bility.

From (17) and (19) we infer that

𝜏𝐧 = 𝐿𝛼𝑀𝛽𝐫∣𝛼𝛽 . (22)

If the deformed surface is a plane (𝑏𝛼𝛽 = 0), then 𝜏 vanishes in particular
and this reduces to 𝐫𝑢𝑣 = 𝟎, where 𝑢 and 𝑣 are rectangular coordinates
aligned with the initial fiber trajectories. In this case we have Rivlin’s
representation [3]

𝐫 = 𝐟 (𝑢) + 𝐠(𝑣) (23)

of the deformation. This representation has been used in [23,24] to
analyze complex plane deformations of inextensible lattices.

2.2. Fiber kinematics

Consider the orthonormal basis {𝐥𝑖} = {𝐥,𝐩,𝐧} with 𝐩 given by (11)1.
This consists of the unit tangent 𝐥 to the first fiber trajectory, and two
vectors – 𝐩 and the surface normal 𝐧 – spanning the cross-sectional
plane of the fiber. Let {𝐋𝑖} = {𝐋,𝐌,𝐍}, where 𝐍 is the unit normal to 𝛺
and 𝐌 = 𝐍×𝐋. Then there is a rotation tensor, 𝐑(𝑙), such that 𝐥𝑖 = 𝐑(𝑙)𝐋𝑖.
The rate of change of the basis {𝐥𝑖} with respect to arclength along the
𝐋-trajectory, denoted by (⋅)′, is

𝐥′𝑖 = 𝐿𝛼 𝐥𝑖,𝛼 = 𝝎(𝑙) × 𝐥𝑖, (24)
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