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A B S T R A C T

This paper addresses the design of time-varying model predictive control of an autonomous vehicle in the
presence of input rate constraints such that closed-loop stability is guaranteed. Stability is proved via Lyapunov
techniques by adding a terminal state constraint and a terminal cost to the controller formulation. The terminal
set is the maximum positive invariant set of a multi-plant description of the vehicle linear time-varying model.
The terminal cost is an upper-bound on the infinite cost-to-go incurred by applying a linear–quadratic regulator
control law. The proposed control design is experimentally tested and successfully stabilizes an autonomous
Scania construction truck in an obstacle avoidance scenario.

1. Introduction

Autonomous vehicles will inevitably face emergency situations, in
which they may need to maneuver aggressively to avoid, for example,
an imminent collision. Road traffic injuries, 94% of which are caused by
human error (European Commission, 2011), are predicted to become
the third most common cause of disability by 2020 (World Health
Organization, 2009). Thus, when removing the human-factor from the
equation, ensuring vehicle stability during safety-critical events is of
utmost importance when developing commercial autonomous vehicles.
Verified stability is a key aspect for safe and reliable autonomous
vehicles.

The road to autonomous driving has been slowly paved with the
gradual introduction of advanced driving assistant systems (e.g., anti-
lock braking system, electronic stability control, adaptive cruise control,
lane departure warning system, and automatic parking). These systems
play a major role of support to the driver both in critical and tedious
situations, reducing the number of traffic accidents and fatalities (Ross,
2014). In particular, ESC intervenes when the steering command given
by the driver yields an unstable vehicle motion. Nevertheless, the design
of the motion controller module for autonomous vehicles must attain
a stable behavior and cannot rely on an eventual unstable behavior
being avoided by driving assistance technology. This work addresses
the problem of designing motion controllers for autonomous driving
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that ensure closed-loop stability. In particular, Model Predictive Control
(MPC) closed-loop stability issues in practice are investigated. The
results show that a standard MPC, without properly designed terminal
cost and terminal state set, can lead to instability, particularly when the
prediction horizon is short. On the one hand, ensuring vehicle stability
facilitates controller certification and standardization when entering
the development phase. On the other hand, shortening the prediction
horizon gives room to more computational demanding modules. In the
first attempts to demonstrate autonomous driving, in the DARPA chal-
lenges, the focus was rather in developing a feasible system architecture
than in testing the stability limits of the vehicles (Thrun, Montemerlo,
Dahlkamp, Stavens, Aron, Diebel, et al., 2006; Urmson, Bagnell, Baker,
Hebert, Kelly, Rajkumar, et al., 2007). Even recent vehicle development
assume that the vehicle operation is well below handling limits and
few or no attention is given to situations of possible vehicle instabil-
ity (Mchugh, 2015; Ziegler, 0000; Ziegler, Bender, Schreiber, Lategahn,
Strauss, Stiller, et al., 2014).

The motion controller is a crucial module in the design of an
autonomous vehicle as it is responsible for stabilizing and guiding the
vehicle along a given reference path. In the recent decades, MPC has
gained increasing attention to address the problem of vehicle control.
With the increase of computational power and optimization solvers
efficiency, MPC has become quite popular, since it handles nonlinear
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time-varying models and constraints in a systematic manner. Using a
model to predict the system behavior, an user-defined cost function is
minimized, and the optimal sequence of inputs is computed in order
to follow a specified path or trajectory under known constraints on
states and inputs. A subset of the optimal input sequence is applied
to the vehicle and the process is then repeated (Bemporad, 2006;
Garcia, Prett, & Morari, 1989; Mayne, Rawlings, Rao, & Scokaert, 2000).
One of the strengths of MPC is the possibility of explicitly include
additional constraints and cost terms, which lead to closed-loop stability
guarantees. One of the most popular strategies for ensuring closed-loop
stability using MPC (see Mayne et al., 2000 and references therein) is to
use the optimization value function as a Lyapunov function. Moreover,
the analysis is convenient if incorporating both a terminal cost and a
terminal state set in the optimal control problem. The terminal cost is
chosen such that it is equal to the infinite-horizon value function in a
suitable neighborhood of the origin (i.e., the terminal state set). Hence,
it is possible to use the known advantages of an infinite-horizon control,
such as guaranteed stability (Keerthi & Gilbert, 1988).

The closed-loop stability properties when using MPC have been
extensively studied from the theoretic point of view (see Mayne et al.,
2000 and references therein). However, the lack of implementability of
many of the proposed control designs makes the practical analysis less
frequent in the literature. When experimental evaluation is considered,
the large majority of the works either leave the stability concerns
out (Thrun et al., 2006; Urmson et al., 2007), or the vehicle looks
stable due to careful tuning of controller (Lima, Trincavelli, Mårtensson,
Nilsson, and Wahlberg, 2017; Liniger, Domahidi, & Morari, 2015;
Turri, Carvalho, Tseng, Johansson, & Borrelli, 2013) or due to the
inclusion of vehicle dynamics constraints (Beal & Gerdes, 2013; Falcone,
Borrelli, Asgari, Tseng, & Hrovat, 2007; Falcone, Borrelli, Tseng, Asgari,
& Hrovat, 2008a; Funke, Brown, Erlien, & Gerdes, 2017; Katriniok,
Maschuw, Christen, Eckstein, & Abel, 2013). The scenarios presented
range from lane-keeping and obstacle avoidance (Funke et al., 2017;
Turri et al., 2013), to racing applications (Beal & Gerdes, 2013; Liniger
et al., 2015). Moreover, the presented experiments typically consider
low-friction roads (Falcone et al., 2007; Turri et al., 2013) or vehicle
handling-limits (Funke et al., 2017; Katriniok et al., 2013). Stability
is ensured by constraints that bound the tire slip angle. Consequently,
the vehicle motion is bounded within the region of the state space that
does not contain unstable vehicle dynamics. Common to all of these
schemes is the absence of explicit stability-imposing constraints in the
MPC formulations. An exception is (Falcone, Borrelli, Tseng, Asgari, &
Hrovat, 2008b), where a stability condition is proposed for a Linear
Time-Varying (LTV) MPC scheme used in active front steering systems.
An additional convex constraint bounding a quadratic function of the
control effort and the predicted states is computed to ensure stability.
However, this requires the MPC to be cast as a Sequential Quadratic
Program (SQP) that has typically higher computational burden than
a QP. Additionally, simplifications are made, such as considering the
model time-invariance by linearizing around the current set point and
assuming that the terminal state set is a singleton. Although this reduces
the complexity of the overall design, it also affects the feasibility region
of the controller.

1.1. Main contributions

The main contributions of this paper are:

1. the offline computation of the terminal cost and terminal state set
for linear time-varying model predictive controller (LTV-MPC)
closed-loop stability;

2. the proof of LTV-MPC closed-loop stability using the novel termi-
nal cost and terminal state set;

3. the interpretation of the MPC parameter tuning influence in
the design of the terminal cost and terminal state set in the
autonomous driving case;

4. the effectiveness of the proposed control design in an autonomous
Scania construction truck in simulation and experimentally.

The work presented here is an extension of Lima, Mårtensson, and
Wahlberg (2017), where closed-loop stability is proved when using and
LTV-MPC to lateral control an autonomous truck. There, a nonlinear
kinematic vehicle model is linearized around a reference path, yielding
an LTV model. The vehicle is modeled in the spatial domain and in
a road-aligned coordinate frame with respect to a reference path to
exclude time and speed from the dynamics equations (Frasch, Gray,
Zanon, Ferreau, Sager, Borrelli, et al., 2013; Gao, Gray, Frasch, Lin,
Tseng, Hedrick, et al., 2012; Lima, Oliveira, Mårtensson, Bemporad, and
Wahlberg, 2017; Plessen, Lima, Mårtensson, Bemporad, & Wahlberg,
2017; Verschueren, De Bruyne, Zanon, Frasch, & Diehl, 2014). That
work used the notion of multi-plant description (Badgwell & Thomas,
1997; Kothare, Balakrishnan, & Morari, 1996), in which the LTV model
is divided in several Linear Time-Invariant (LTI) models. Moreover, it
proposes that the maximum positive invariant set of over all the LTI
models in the multi-plant description would be the terminal state set.
The terminal cost was computed solving a convex min–max optimization
problem (Lu & Arkun, 2000) that leads to the determination of the worst
time-invariant model if used as a prediction model.

In this work, the notions of multi-plant description and space-based
road-aligned vehicle model are used again. In addition to Lima and
Mårtensson et al. (2017), this work

1. presents a new approach for computing the terminal cost;
2. proposes terminal cost and terminal state set considering input

rate constraints;
3. shows the experimental evaluation of the proposed control de-

sign.

In this paper, the terminal cost is proposed to be the upper-bound
on the cost-to-go incurred by applying a Linear–Quadratic Regulator
(LQR) control law to any of the possible models in the multi-model
representation. An upper-bound can be obtained by positively scaling
one of Riccati matrices resulting from the cost-to-go calculation, which
considers that the vehicle model is contained inside a convex uncertainty
polytope. Moreover, including input rate constraints adds one extra
dimension to both the terminal state set and weight matrix. This extra
dimension is the input and it plays a major role in ensuring vehicle
stability. With the proposed cost and state set design, stability and fea-
sibility of the proposed LTV-MPC scheme are theoretically proved. The
MPC parameter tuning influence is discussed in the light of autonomous
driving. The effectiveness of the proposed MPC design is evaluated in
simulation and in real experiments with a construction Scania truck in
a scenario that resembles an emergency maneuver, where the vehicle
avoids a fictitious obstacle. The controller successfully stabilizes an
autonomous Scania construction truck even when other controllers, with
no or milder terminal cost and terminal state set, cannot do it.

The development of the methods presented in this paper has in
mind their practical applicability. Therefore, including the terminal
cost and terminal state set in the control design should neither affect
the execution time nor the optimization convexity. However, offline-
computed solutions may be conservative as they need to cover a larger
set of scenarios a priori, rather than computing less conservative terminal
cost and terminal state set online.

1.2. Outline

The remainder of this paper is organized as follows. Section 2
introduces theoretical preliminaries; Section 3 addresses the problem
of reference tracking using a receding-horizon framework by devel-
oping an LTV-MPC controller; Section 4 presents the nonlinear space-
based vehicle model in the road-aligned coordinate frame used in the
autonomous driving example. Furthermore, the same section proposes
the terminal cost and terminal state set, which are used for proving
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