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a b s t r a c t

We investigate the performance and robustness of distributed averaging integral controllers used in the
optimal frequency regulation of power networks. We construct a strict Lyapunov function that allows
us to quantify the exponential convergence rate of the closed-loop system. As an application, we study
the stability of the system in the presence of disruptions to the controllers’ communication network, and
investigate how the convergence rate is affected by these disruptions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Modern power grids can be regarded as a large network of con-
trol areas, each producing and consuming power and transferring
it to adjacent areas. The frequency of the AC signal is tightly reg-
ulated around its nominal value of e.g. 50Hz to guarantee reliable
operation of this network. Traditionally, this is achieved by means
of proportional (‘droop’) control and PI control. In this setup, each
area compensates for its local fluctuations in load, and adjusts its
production to provide previously scheduled power flows to the
adjacent areas. As a result, estimates of the load in each area are
required in advance to achieve economical efficiency.

Recently, renewable energy sources such as wind turbines have
been introduced in significant numbers. Since these sources do not
usually provide a predictable amount of power, the net load on the
individual control areas will change more rapidly and by larger
amounts. More substantial fluctuations are expected to occur in
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microgrids, which are energy systems that can operate indepen-
dently of the main grid. The resulting need for more advanced
control strategies for future power networks has led to the design
of distributed controllers equipped with a real-time communica-
tion network (Bürger & De Persis, 2015; Dörfler, Simpson-Porco,
& Bullo, 2016; Mojica-Nava, Macana, & Quijano, 2014; Shafiee,
Guerrero, & Vasquez, 2014; Trip, Bürger, & De Persis, 2016).

The addition of a communication network raises a reliability
and security problem, as communication packets can be lost and
digital communication networks may fall victim to failures and
malicious attacks. A common disruption is the so-called Denial of
Service, or DoS (Byres & Lowe, 2004), which can be understood as
a partial or total interruption of communications. It is therefore
of interest to characterize the performance degradation of the
aforementioned networks of distributed controllers under loss of
information, possibly due to a DoS event.

1.1. Literature review

The current research on frequency regulation in power net-
works is reviewed in Ibraheem, Kumar, and Kothari (2005). Since
this field of research receives considerable amounts of attention,
wewill summarize a subset of results that are close to our interest.

Frequency stability and control in power networks is a well-
established field of research which has lead to important results
for a variety of models (see e.g. Bergen & Hill, 1981; Tsolas,
Arapostathis, & Varaiya, 1985). More recently, distributed control
methods have been proposed to guarantee not only frequency
regulation but also economic optimality. In a microgrid context,

https://doi.org/10.1016/j.automatica.2018.09.010
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.09.010
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.09.010&domain=pdf
mailto:e.r.a.weitenberg@rug.nl
mailto:c.de.persis@rug.nl
mailto:n.monshizadeh@rug.nl
https://doi.org/10.1016/j.automatica.2018.09.010


104 E. Weitenberg et al. / Automatica 98 (2018) 103–113

distributed averaging integral control is well-studied (Andreasson,
Tegling, Sandberg, & Johansson, 2017; Bürger & De Persis, 2015;
Dörfler et al., 2016; Simpson-Porco, Dörfler, & Bullo, 2013; Trip et
al., 2016). In the context of power networks, distributed internal-
model-based optimal controllers have also been studied (Bürger &
De Persis, 2015; Trip et al., 2016). As a complementary approach
to distributed integral or internal-model controllers, primal–dual
gradient controllers (Li, Chen, Zhao, & Low, 2014; Mallada, Zhao,
& Low, 2017; Stegink, De Persis, & van der Schaft, 2017; Zhang
& Papachristodoulou, 2013) are able to handle general convex
objective functions as well as constraints, but in turn requiremuch
information about the power network parameters.

The robustness of power networks under various controllers
has been investigated in the works above to varying degree. In
this light, it is useful to consider strictly decreasing energy func-
tions (Malisoff & Mazenc, 2009). Zhao, Mallada, and Dörfler (2015)
make a first attempt to arrive at one, and their effort is expanded
upon by Schiffer, Dörfler, and Fridman (2017) in the context of
time-delayed communication. Bearing this in mind, we propose a
construction of a new strict Lyapunov function for the purpose of
explicitly quantifying the exponential convergence of power net-
works under distributed averaging integral control and then study
the performance of this control in the presence of communication
disruptions.

As an application of robustness measures, we will investigate
the effect of Denial of Service. It, and related phenomena, have been
studied as well. See e.g. Byres and Lowe (2004) for an introduction
to the subject. It can be modeled as a stochastic process (Befekadu,
Gupta, & Antsaklis, 2015), a resource-constrained process (Gupta,
Langbort, & Başar, 2010), or using only constraints on the propor-
tion of time it is active (De Persis & Tesi, 2014, 2015). Correspond-
ingly, the investigations of systems under DoS events vary, with
focus being on planning transmissions outside the disruption in-
tervals (Shisheh Foroush &Martínez, 2013), limiting themaximum
ratio of time during which DoS is active (De Persis & Tesi, 2015),
or guaranteeing stability regardless and quantifying convergence
behavior (De Persis & Tesi, 2014, 2015). The latter approach of-
fers interesting perspectives, since the specific characterization of
the period of time during which communication is not permitted
adopted in De Persis and Tesi (2014) allows for great flexibility and
can conveniently model both genuine loss of communication or
packet drops due to malicious behavior. Furthermore, the analysis
of De Persis and Tesi (2014, 2015) is based on Lyapunov functions,
can handle distributed systems (Senejohnny, Tesi, & De Persis,
2015; Senejohnny, Tesi, & De Persis, 2017), and therefore is well
suited for the class of nonlinear networked models describing
power networks.

1.2. Main contribution

The contribution of this paper is primarily theoretical: existing
approaches to the problem of optimal frequency control have
mostly relied on non-strictly decreasing energy — or Lyapunov
functions, using LaSalle’s invariance principle and related results
to guarantee convergence to an invariant manifold on which the
Lyapunov function’s derivative vanishes (see Schiffer et al., 2017;
Vu & Turitsyn, 2017 for exceptions). Since this does not lead to
strong results on convergence, we design a strictly decreasing
Lyapunov function that does prove exponential convergence to
the optimal synchronous solution. Our primary motivation for
investigating this property is to provide an analytical tool with
which robustness of the closed-loop system to disruptions can
be quantified. Additionally, the Lyapunov function proposed in
this paper is useful for analysis of related systems, as exemplified
by Weitenberg et al. (2018).

As an illustration, the final part of the paper makes use of
the developed Lyapunov function to show exponential conver-
gence to the optimal solution in spite of possible communication
interruptions, modeled here as complete temporary removal of
the communication network. This is a simplification of the many
possible scenarios that could occur (see Remark 6). We directly
relate the speed of convergence to the physical parameters of the
system and the availability of the communication network. As a
result, the resilience of the aforementioned economically optimal
control strategies to DoS events is quantified explicitly.

The remainder of this paper is organized as follows. In Section 2,
we outline our model for the power network, goals for its control,
and existing control strategies we will use. Then, in Section 3, we
derive a strictly decreasing Lyapunov function and show exponen-
tial convergence to the optimal solution. In Section 4, we introduce
a model for communication disruptions, and use our Lyapunov
function to study the robustness of distributed controllers to these
disruptions. In Section 5,we illustrate themain result usingnumer-
ical simulations of an academic model of a power network. Finally,
Section 6 presents conclusions.

1.3. Notation

Given a system state x = x(t), we use the notation ẋ tomean the
time derivative ∂x

∂t . Likewise, a function f : Rn
→ R of such a state,

such as a Lyapunov function, has time derivative ḟ := (∇xf (x))⊤ẋ.
We denote its Hessian by ∇

2f . When used with vector arguments,
sin and cos are defined element-wise. The symbols and 1 denote
vectors and matrices filled with 0 and 1 respectively; if there is
ambiguity about their size, the dimensions are given as a subscript.
Finally, sp(A) :=

1
2 (A+A⊤) is used to denote the symmetric part of

a square matrix A.

2. Setting

We consider a power grid, represented here by a set of n buses.
The network of power lines between the buses is represented by a
connected graphwith n nodes andm arbitrarily oriented edges and
with ±1-valued incidence matrix B. The orientation is necessary
for analytical purposes but otherwise meaningless; the physical
network is undirected.

We will use a structure-preserving model for the power net-
work. We consider two types of nodes. Some nodes in the network
are connected to synchronous generators or inverters with filtered
power measurements; these we call generators. The others, which
we will refer to as loads, are frequency-responsive loads or invert-
ers with instantaneous power measurements and primary droop
control. In this work, we disregard the additional possibility of
‘passive’ nodes that do not contribute to frequency control at all.
Accordingly, we define the setsG and L of generator and load nodes
with cardinality nG and nL respectively, such that nG + nL = n.

The dynamics at each bus is considered in a reference frame that
rotates with a certain nominal frequency, i.e. 50Hz. The dynamics
can be expressed in the following form, also known as the swing
equations (Kundur, Balu, & Lauby, 1994). At generator node i ∈ G,

θ̇i = ωi (1a)

Miω̇i = −Diωi −
∑
j∈Ni

γij sin(θi − θj) + ui − Pi, (1b)

whereas at load node i ∈ L,

0 = −Diωi −
∑
j∈Ni

γij sin(θi − θj) + ui − Pi, (1c)

Here, γij = BijViVj for each edge connecting buses i and j. We sum-
marize the symbols used in Table 1. In this paper, we assume that
the voltages at the buses are constant and the lines are lossless.
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