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a b s t r a c t

Accurate states and unknown random bias estimation for well- and ill-conditioned systems are crucial
for several applications. In this paper, a fusion of a two-stage Kalman filter and an information filter, and
its extensions are considered to estimate the state variables and unknown random bias. Specifically, we
propose four extensions of two-stage Kalman filters: two-stage information filter (TSIF), multi-sensor
two-stage information filter (M-TSIF) and their square-root versions. The TSIF deals with single-sensor
systems whereas the M-TSIF is capable to handle multi-sensor systems. For ill-conditioned systems,
numerically stable square-root versions of TSIF and M-TSIF are developed. The performance of the
proposed filters (along with the existing two-stage Kalman filter), for well- and ill-conditioned cases,
is demonstrated on a quadruple-tank model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

1.1. Introduction

Formany practical systems it is often difficult to obtain an accu-
rate plant model due to various factors such as bias, un-modelled
dynamics. State estimation of unknown random bias plays impor-
tant role in various applications like fault-tolerant control design.
The undesired effects of unknown random bias can be minimised
or eliminated by designing an appropriate fault-tolerant controller
based on the estimated bias. If the unknown bias estimate is not
accurate, then there is a high chance that the overall fault-tolerant
control system could fail to provide the desired performance.
Several authors have explored various methods to estimate the
unknown random bias using two-stage Kalman filters (Chen &
Patton, 2012; Darouach & Zasadzinski, 1997; Darouach, Zasadzin-
ski, & Boutayeb, 2003; Gillijns & De Moor, 2007; Hsieh & Chen,
1999; Ignagni, 1981; Keller & Darouach, 1997). A numerically
stable square-root two stage Kalman filter is proposed in Kanev,
Verhaegen, et al. (2005). In two-stage Kalman filters, two filters
(bias-free estimator and bias estimator) are synthesised in par-
allel to estimate the bias. A square-root two-stage information
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filter and smoother for ‘constant’ bias is given in Bierman (1975).
In certain real-life applications multi-sensor based estimation is
preferred over a single-sensor based estimation, for example in
target tracking applications, information frommany radars placed
at different altitudes are fused to reliably estimate the states of
the target (Gan & Harris, 2001; Lin, Bar-Shalom, & Kirubarajan,
2004, 2005). Initialisation is easy in information filters than the
covariance filters. However, unlike the Kalman filters, the state
variables and covariance are not readily available for information
filters; they have to be recovered at each time step for further
processing. For multi-sensor state estimation, due to the simple
update stage, the information filters are preferred over their alge-
braic equivalent Kalman filters (Grewal & Andrews, 2011; Mutam-
bara, 1998). Most of the existing multi-sensor approaches for bias
estimation assumes that onlymeasurementmodels are affected by
the bias; and theprocess or plantmodels are explicitly bias free (Lin
et al., 2004, 2005). Further, they are developed to propagate the
covariance matrices — which in some cases are not numerically
reliable for ill-conditioned systems; for such systems square-root
filters are advisable. The main contribution of this paper is to
propose computationally efficient information forms of the two-
stage Kalman filters to deal with measurements from multiple
sensors, in the presence of process andmeasurement noise as well
as randombias. In this paper, we first present a two-stage informa-
tion filter (TSIF) and its square-root version for measurement from
single sensor. Further we extend them to handle multiple sensors
to estimate the state vector and the unknown random bias. The
square-root versions of the proposed filters have been designed
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to handle ill-conditioned systems, where the square-root factors
of information matrices are propagated. Further, in this paper,
both plant and measurement models are assumed to be explicitly
corrupted by bias.

1.2. Preliminaries

This section briefly presents the two-stage Kalman filter (Keller
& Darouach, 1997).

Consider the following discrete-time process, observation and
bias models

xk = Axk−1 + Buk−1 + Fbk−1 + wx
k−1 (1)

yk = Cxk + Gbk + vk (2)

bk = bk−1 + wb
k−1 (3)

where, xk ∈ Rn is the state vector, uk ∈ Rr is the control input,
yk ∈ Rm is the measurement vector and bk ∈ Rp is an unknown
bias vector. wx

k , vk and wb
k , are the process, observation and bias

noises, which are assumed to be zero-mean uncorrelated random
variables with Q , R and N as their respective covariances. The
matrices A, B, F , C and G are of appropriate dimensions.

The two-stage Kalman filter consists of two parallel filters,
namely bias-free estimator and bias estimator as given below.

The optimal two-stage Kalman state estimate for the system
(1)–(3) is given by the following equation (Keller & Darouach,
1997):

xk|k = x̃k|k + βk|k bk|k (4)

and the following two algorithms.

Bias-free estimator:

1: The predicted state vector and covariance matrix are:

x̃k|k−1 = Ãxk−1|k−1 + Buk−1 + rk−1bk−1|k−1

−βk|k−1bk−1|k−1 (5)

P̃k|k−1 = ÃPk−1|k−1AT
+ Q + rk−1Pb

k−1|k−1r
T
k−1 (6)

−βk|k−1Pb
k|k−1β

T
k|k−1

where,

rk−1 = Aβk−1|k−1 + F (7)

Pb
k|k−1 = Pb

k−1|k−1 + N (8)

βk|k−1 = rk−1Pb
k−1|k−1P

b−1

k|k−1 (9)

2: The updated state vector and covariance matrix are:

x̃k|k = x̃k|k−1 + K̃k̃νk (10)

P̃k|k = (I − K̃kC )̃Pk|k−1 (11)

where, I is the identity matrix of an appropriate dimension
and

K̃k = P̃k|k−1CT G̃−1
k (12)

G̃k = CP̃x
k|k−1C

T
+ R (13)

ν̃k = yk − Cx̃k|k−1 (14)

Bias estimator:

1: The predicted bias and corresponding covariance matrix
are:

bk|k−1 = bk−1|k−1, Pb
k|k−1 = Pb

k−1|k−1 + N (15)

2: The updated bias and corresponding covariance are:

bk|k = bk|k−1 + K b
k (̃νk − Hk|k−1bk|k−1) (16)

Pb
k|k = (I − K b

kHk|k−1)Pb
k|k−1 (17)

where,

K b
k = Pb

k|k−1H
T
k|k−1

(
Hk|k−1Pb

k|k−1H
T
k|k−1 + G̃k

)−1
(18)

Hk|k−1 = G + Cβk|k−1 (19)

3: The updated β is given by:

βk|k = βk|k−1 − K̃kHk|k−1 (20)

2. Main results

2.1. Two-stage information filter and its square-root version

For many practical applications, information filters are pre-
ferred over their equivalent Kalman filters. Some of the preferred
features of information filters include easy initialisation and com-
putationally simple update stage, Kailath, Sayed, and Hassibi
(2000), Lee (2008), Mutambara (1998), Psiaki (1999) and Wang,
Feng, and Tse (2014).

2.1.1. Two-stage information filter
An equivalent information form of optimal two-stage Kalman

filter given in Section 1.2 will be derived. In the information filter
the inverse of the covariance matrix (information matrix) and
information vector are propagated.

The information matrix and information vector can be written
in terms of covariance matrix and state vector as

Y = P−1
= P \ I, y = Yx. (21)

where, ‘\’ is the left division operator (Chandra, Gu, & Postlethwaite,
2013; Eustice, Singh, Leonard, & Walter, 2006) and I denotes the
identity matrix. Throughout this paper the above notation will be
used. The proposed TSIF is given in the following theorem.

Theorem 1. The optimal TSIF’s bias and state vector estimate for a
system in (1)−(3) are given by the following equations:

xk|k = Ỹk|k
\̃
yk|k +

[
Ỹk|k

\
yβ

k|k

] [
Y b
k|k

\
ybk|k

]
(22)

bk|k =
[̃
Y b
k|k

\
ybk|k

]
(23)

and the following algorithms.

Bias-free information filter:

1: The predicted information vector and the corresponding infor-
mation matrix are:

Ỹk|k−1 =
[
AỸk−1|k−1 \ IAT

+ Q + rk−1Y b
k−1|k−1 \ IrTk−1

−βk|k−1 Y b
k|k−1 \ I βT

k|k−1

]
\ I (24)

ỹk|k−1 = Yk|k−1̃xk|k−1, (25)

where,

βk|k−1 = rk−1
[
Y b
k−1|k−1 \ I

]
Y b
k|k−1

x̃k|k−1 = AỸk−1|k−1 \ ỹk−1|k−1 + Buk−1 + rk−1bk−1|k−1

−βk|k−1bk−1|k−1

rk−1 = Aβk−1|k−1 + F



Download English Version:

https://daneshyari.com/en/article/11027876

Download Persian Version:

https://daneshyari.com/article/11027876

Daneshyari.com

https://daneshyari.com/en/article/11027876
https://daneshyari.com/article/11027876
https://daneshyari.com

