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a b s t r a c t

Methods for computing approximately bisimilar symbolic models for incrementally stable switched
systems are often based on discretization of time and space, where the value of time and space sampling
parameters must be carefully chosen in order to achieve a desired precision. These approaches can result
in symbolic models that have a very large number of transitions, especially when the time sampling, and
thus the space sampling parameters are small. In this paper,we present an approach to the computation of
symbolic models for switched systemswith dwell-time constraints usingmultirate time sampling, where
the period of symbolic transitions is a multiple of the control (i.e. switching) period. We show that all the
multirate symbolic models, resulting from the proposed construction, are approximately bisimilar to the
original incrementally stable switched systemwith the precision depending on the sampling parameters,
and the sampling factor between transition and control periods. The main contribution of the paper is
the explicit determination of the optimal sampling factor, which minimizes the number of transitions
in the class of proposed symbolic models for a prescribed precision. Interestingly, we prove that this
optimal sampling factor is mainly determined by the state space dimension and the number of modes
of the switched system. Finally, an illustration of the proposed approach is shown on an example, which
shows the benefit of multirate symbolic models in reducing the computational cost of abstraction-based
controller synthesis.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A switched system is a dynamical system consisting of a finite
number of subsystems and a law that controls the switching among
them (Liberzon, 2003; Lin & Antsaklis, 2009; Sun & Ge, 2011). The
literature on switched systems principally focuses on the stability
and stabilization problems. However, other objectives need also
to be considered such as safety, reachability or more complex
objectives such as those expressed in linear temporal logic. For
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this reason, over recent years, several studies focused on the use of
discrete abstractions and symbolic control techniques. The area of
symbolic control is concerned with the use of algorithmic discrete
synthesis techniques for designing controllers for continuous and
hybrid dynamical systems (see e.g. Rungger, Girard, & Tabuada,
2017; Tabuada, 2009 and the references therein). A key concept
in symbolic control is that of symbolic models, which consist in
discrete abstractions of the continuous dynamics, and which are
amenable to automata theoretic techniques for the synthesis of
controllers enforcing a broad range of specifications (Belta, Yor-
danov, & Aydin Gol, 2017; Bloem, Jobstmann, Piterman, Pnueli,
& Sa’ar, 2012). Controllers for the original system, with strong
formal guarantees, can then be obtained through dedicated refine-
ment procedures (Girard, 2012; Reissig, Weber, & Rungger, 2017;
Tabuada, 2009). This latter step requires the original system and
the symbolic model to be related by some formal behavioral rela-
tionship such as simulation, bisimulation relations or their approx-
imate and alternated versions (Girard & Pappas, 2007; Tabuada,
2009).

Numerous works have been dedicated to the computation of
symbolic models for various classes of dynamical systems. Focus-
ing on approximately bisimilar abstractions, existing approaches
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make it possible to deal with nonlinear systems (Pola, Girard,
& Tabuada, 2008; Pola & Tabuada, 2009), switched systems (Gi-
rard, Pola, & Tabuada, 2010), time-delay systems (Pola, Pepe, &
Di Benedetto, 2015; Pola, Pepe, Di Benedetto, & Tabuada, 2010),
networked control systems (Borri, Pola, & Di Benedetto, 2014;
Zamani,Mazo, & Abate, 2014), stochastic systems (Zamani & Abate,
2014; Zamani, Esfahani, Majumdar, Abate, & Lygeros, 2014), etc.
All these approaches are essentially based on discretization of
time and space and require the considered system to satisfy some
kind of incremental stability property (Angeli, 2002). However,
incremental stability can be dropped if one seeks symbolic mod-
els related only by one-sided approximate simulation relations
(Tabuada, 2008; Zamani, Pola, Mazo, & Tabuada, 2012). In most
cases, symbolic models of arbitrary precision can be obtained by
carefully choosing time and space sampling parameters. However,
for a given precision, the choice of a small time sampling parameter
imposes to choose a small space sampling parameter resulting in
symbolic models with a prohibitively large number of transitions.
This constitutes a limiting factor of the approach because the
size of the symbolic models is crucial for computational efficiency
of discrete controller synthesis algorithms. Several studies have
been conducted in order to address this issue by enabling the
computation of more parsimonious symbolic models with smaller
numbers of transitions. Such approaches include compositional
abstraction schemes where symbolic models of a system are built
from symbolic models of its components (Majumdar, Mallik, &
Schmuck, 2016; Pola, Pepe, & Di Benedetto, 2016; Tazaki & Imura,
2008); multi-resolution or multi-scale symbolic models computed
using non-uniform adaptive space discretizations (Girard, Gössler,
& Mouelhi, 2016; Tazaki & Imura, 2009); symbolic models where
the set of symbolic states is not given by a discretization of the
state-space but by input sequences (Le Corronc, Girard, & Gössler,
2013; Zamani, Abate, & Girard, 2015).

In this paper, we show how the size of symbolic models can
be reduced using multirate sampling. Multirate sampling has been
introduced in the area of sampled-data systems to face some of
the sampling processes disadvantages such as the loss of relative
degree and changes in the properties of the zero dynamics (see
e.g. Grizzle & Kokotovic, 1988; Monaco & Normand-Cyrot, 1992,
2001). In this paper, we present an approach to the computation
of multirate symbolic models for incrementally stable switched
systems, where the period of symbolic transitions is a multiple
of the control (i.e. switching) period. A similar approach has been
explored in the symbolic control literature in the context of non-
linear digital control systems (Majumdar & Zamani, 2012). The
first contribution of the paper is to extend this approach to the
class of switched systems, with dwell-time constraints. We show
that the obtained multirate symbolic models are approximately
bisimilar to the original switched system. Then, the second and
main contribution of the paper lies in the explicit determination
of the optimal sampling factor between transition and control
periods, which minimizes the number of transitions in the class of
proposed symbolicmodels for a prescribed precision; this problem
is not considered in Majumdar and Zamani (2012). Interestingly,
we show that the optimal sampling factor is mainly determined
by the state space dimension and the number of modes of the
switched system.

This paper is organized as follows. In Section 2,we introduce the
class of incrementally stable switched systems under study andwe
present the abstraction framework used in the paper. In Section 3,
we present the construction of symbolic models for incrementally
stable switched systems with dwell-time constraints, using mul-
tirate sampling. In Section 4, we establish the optimal sampling
factor between control and transition periodswhichminimizes the
number of transitions in the symbolic model. Finally, in Section 5,
we illustrate our approach using an example taken from Girard

et al. (2010), which shows the benefits of the proposed multirate
symbolic models.

A preliminary version of this work has been presented in the
conference paper (Saoud & Girard, 2017) where switched systems
without dwell-time constraints are considered. The current paper
extends the approach to consider dwell-time constraints; results
of Saoud and Girard (2017) being recovered as particular cases.We
also provide novel numerical experiments.

Notations. Z,N andN+ denote the sets of integers, of non-negative
integers and of positive integers, respectively. R,R+

0 and R+ de-
note the sets of real numbers, of non-negative real numbers, and
of positive real numbers, respectively. For s ∈ R+

0 , ⌊s⌋ denote its
integer part, i.e. the largest nonnegative integer r ∈ N such that
r ≤ s. For x ∈ Rn, ∥x∥ denotes the Euclidean norm (i.e. the 2-norm)
of x. A continuous function γ : R+

0 → R+

0 is said to belong to class
K if it is strictly increasing and γ (0) = 0; γ is said to belong to
class K∞ if γ is of class K and γ (s) → ∞ as s → ∞. A continuous
function β : R+

0 × R+

0 → R+

0 is said to belong to class KL if, for
all fixed t ∈ R+

0 , the map β(·, t) belongs to classK, and for all fixed
s ∈ R+, the map β(s, ·) is strictly decreasing and β(s, t) → 0 as
t → ∞.

2. Preliminaries

2.1. Incrementally stable switched systems

We introduce the class of switched systems:

Definition 1. A switched system is a quadruple Σ = (Rn, P,P, F ),
consisting of the following:

• a state space Rn;
• a finite set of modes P = {1, . . . ,m};
• a set of switching signals P ⊆ S(R+

0 , P), where S(R+

0 , P)
denotes the set of piecewise constant functions from R+

0 to
P , continuous from the right and with a finite number of
discontinuities on every bounded interval of R+

0 ;
• a collection of vector fields F = {f1, . . . , fm}, indexed by P .

The discontinuities 0 < t1 < t2 < . . . of a switching signal
are called switching times; by definition of S(R+

0 , P), there are only
a finite number of switching times on every bounded interval of
R+

0 and thus Zeno behaviors are avoided. A switching signal p ∈

S(R+

0 , P) has dwell-time τd ∈ R+ if the sequence of switching times
satisfies tk+1 − tk ≥ τd, for all k ≥ 1. The set of switching signals
with dwell-time τd is denoted Sτd (R

+

0 , P).
A piecewise C1 function x : R+

0 → Rn is said to be a trajectory
of Σ if it is continuous and there exists a switching signal p ∈ P
such that, at each t ∈ R+

0 where the function p is continuous, x is
continuously differentiable and satisfies

ẋ(t) = fp(t)(x(t)). (1)

Wemake the assumption that the vector fields fp, p ∈ P , are locally
Lipschitz and forward complete (see e.g. Angeli & Sontag, 1999
for necessary and sufficient conditions), so that for all switching
signals p ∈ P and all initial states x ∈ Rn, there exists a unique
trajectory, solution to (1) with x(0) = x, denoted x(., x, p). We will
denote by φ

p
t the flow associated to the vector field fp. Then, for a

constant switching signal given by p(t) = p, for all t ∈ R+

0 , we have
x(t, x, p) = φ

p
t (x), for all t ∈ R+

0 .
In the following, we consider incrementally globally uniformly

asymptotically stable (δ-GUAS) switched systems, see Girard et al.
(2010) for a formal definition. Intuitively, incremental stability
means that all trajectories associated to the same switching signal
converge to the same trajectory, independently of their initial
conditions. Sufficient conditions for incremental stability are given
in Girard et al. (2010) in terms of existence of multiple Lyapunov
functions.
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