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a b s t r a c t

For discrete-time linear systems, we propose a suboptimal approach to constrained estimation so that the
associated computationburden is reduced. This is achievedby enforcing amoveblocking (MB) structure in
the estimated process noise sequence (PNS). We show that full information estimation (FIE) and receding
horizon estimation (RHE) with MB are both stable in the sense of an observer. The techniques in proving
stability are inspired by those that have beenproposed for standardRHE. To be specific, stability results are
mainly achieved by (i) carefully embellishing the general assumptions for standard RHE to accommodate
the MB requirement; (ii) exploiting the principle of optimality, as well as convexity of the quadratic
programs (QPs) associated with FIE and RHE; (iii) relying on the fact that the Kalman filter is the best
linear estimator in the least-squares sense. A crucial requirement in achieving stability for MB RHE is that
the segment structure (SS) of the PNS of MB FIE for the optimization steps within the receding horizon
(i.e., steps between T − N and T − 1) has to be enforced in the MB RHE optimization. As a result, the MB
RHE strategy becomes a dynamic estimator with a periodically varying computational complexity. The
theoretical results have been illustrated with examples.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Including constraints in estimation can lead to improvedperfor-
mance in applications (Dissanayake, Sukkarieh, Nebot, & Durrant-
Whyte, 2001; Gorinevsky, Kim, Beard, Boyd, & Gordon, 2009; Ma-
hata, Mousavi, Söderström, & Valdek, 2005; Xie, Ugrinovskii, &
Petersen, 2008; Yan & Bitmead, 2005). RHE, as the counterpart of
receding horizon control (RHC) (Kong, Goodwin & Seron, 2013;
Goodwin, Kong, Mirzaeva & Seron, 2014) for estimation, is a sys-
tematic framework for handling constraints (Goodwin, De Dona,
Seron, & Zhuo, 2005; Goodwin, Seron, & Doná, 2005; Rawlings & Ji,
2012; Rawlings &Mayne, 2009; Samar, Gorinevsky, & Boyd, 2004).
In contrast to FIE that uses all available information (see, e.g., Ge &
Kerrigan, 2017, Muske, Rawlings, & Lee, 1993), RHE only employs
measurements within a receding time frame, and the information
embedded in the previousmeasurements is captured by the arrival
cost (Rawlings & Mayne, 2009, pp. 32-40). Various forms of RHE
have been proposed so far. In Goodwin, De Dona et al. (2005),
Goodwin, Seron et al. (2005), Kong and Sukkarieh (2018), Muske
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et al. (1993), Rao (2000), Rawlings andMayne (2009), Rawlings and
Ji (2012), Rao, Rawlings, and Lee (2001), Rao, Rawlings, and Mayne
(2003) and Samar et al. (2004), the data fitting cost is optimized
over the initial state and the PNS. Other frameworks estimate only
the initial state (Alessandri, Baglietto, & Battistelli, 2003;Michalska
& Mayne, 1995; Sui & Johansen, 2014). Moreover, some useful
techniques have been proposed in the recent literature to combine
RHE with particle filtering (Rawlings & Bakshi, 2006) or linear
estimation methods (Kong & Sukkarieh, 2018; Sui & Johansen,
2014).

Despite that FIE and RHE can offer appealing performance, one
has to solve an optimization problem at each sampling time. This
requirement can be alleviated in a fewdifferentways. For example,
in close spirit to the well-known results on explicit RHC (Bempo-
rad,Morari, Dua, & Pistikopoulos, 2002; Johansen, Petersen, & Slup-
phaug, 2002; Kerrigan & Maciejowski, 2004), Voelker, Kouramas,
and Pistikopoulos (2013) formulate the RHE as a multi-parametric
QP and show that the optimal solution is a piecewise affine func-
tion of the measurements, the known inputs, and the arrival cost.
One can also explore the optimization structure to accelerate the
computation (Gorinevsky et al., 2009; Morabito, Kogel, Bullinger,
Pannocchia, & Findeisen, 2015). Whilst it is imperative to render
fast solutions, it is equally important that the estimation error
stability is guaranteed (Alessandri & Gaggero, 2017; Schneider,
Hannemann-Tamás, & Marquardt, 2015). Especially, in Alessandri
and Gaggero (2017), descent algorithms have been proposed to
solve RHE for linear and nonlinear systems. Conditions that en-
sure the estimation error stability are also thoroughly discussed
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therein. Schneider et al. (2015) deal with large-scale linear sys-
tems, and rigorously derive conditions guaranteeing convergence
to the optimal centralized RHE so that stability properties of the
latter hold for the considered framework.

Alternative to the abovemethods, this paper proposes to reduce
the computation burden of constrained estimation by enforcing a
MB structure on the estimated PNS in the optimization. Note that
the MB framework and the methods in Alessandri and Gaggero
(2017) and Schneider et al. (2015) have their respective (and com-
plementary) features. To be specific, within our RHE framework
(see in Section 2), the cost is optimized over both the initial state
and the PNS, accounting for constraints. On the contrary, Alessan-
dri and Gaggero (2017) consider disturbance-free systems, and try
to estimate only the initial state without considering constraints.
An advantage of the results inAlessandri andGaggero (2017) is that
they are applicable for both linear and nonlinear systems, while
we only consider linear systems, although the extension of the
MB concept to nonlinear systems is possible, based on the ideas
herein and Rao et al. (2003). Our results are similar with those
in Schneider et al. (2015) in that both frameworks estimate the
initial state and the PNS while considering constraints, for linear
systems. However, we consider the centralized case for both FIE
and RHE while Schneider et al. (2015) focus on distributed RHE.

Our contributions are summarized as follows. (1) Since the
complexity of FIE and RHE with MB depends on block size (taken
to be fixed, say S steps) w.r.t. the sampling instant order (in time)
and the receding horizon length, we give a thorough analysis and
illustration on the segment structures (SS) of the PNS for FIE and
RHE (see in Figs. 1–4). (2) A second major contribution is to show
that both FIE and RHE with MB are stable in the sense of an
observer. The techniques we adopt are inspired by those given
in Rao et al. (2001) for standard RHE. Stability is mainly achieved
by (i) carefully embellishing standard assumptions in Rao et al.
(2001) to accommodate theMB requirement (see, AssumptionA1);
(ii) exploiting the principle of optimality, and convexity of the QPs
associated with FIE and RHE (Proposition 1); (iii) relying on the
fact that Kalman filter (KF) is the best linear estimator in the least-
squares sense without constraints (Remark 2 and Lemma 2). (3)
We have discovered a crucial requirement in proving stability for
RHE with MB, i.e., given time T and the horizon length N , the SS of
the PNS of FIE withMB for the time steps between T −N and T −1,
has to be enforced for RHE. (4) We have illustrated the proposed
strategy with several simulation studies.

Ideas of input parametrization and MB have been proposed in
RHC (Maciejowski, 2002, pp. 159–163), (Wang, 2001, 2004, 2009,
chps. 3–6), (Cagienard, Grieder, Kerrigan, & Morari, 2007; Gond-
halekar & Imura, 2010; Gondhalekar, Imura, & Kashima, 2009;
Goodwin et al., 2006; Jung, Jang, & Lee, 2015; Li, Xi, & Lin, 2013;
Shekhar &Maciejowski, 2012). Especially, recent research inWang
(2001), Wang (2004) and Wang (2009) shows that basis functions
such as Laguerre and Kautz functions can be utilized in parametriz-
ing RHC so that the number of optimization variables is greatly
reduced with stability guarantee. Our conjecture is that similar
ideas can also be applied in RHE, resulting in comparable (or
better) computation and estimation tradeoffs with these of the
MBmethod, especially for noises having large temporal variability.
However, a complete comparison of the basis function and MB
concepts in RHE is out of this paper’s scope, and thus left for future
work. We will also show that RHE with MB has similarities and
differences with MB RHC. On the one hand, the complexity of the
associated optimization problem for RHE with MB turns out to be
changing periodically, given the requirement mentioned in item
(3) in the previous paragraph (see in (11)–(12)). This is similar to
the finding of Cagienard et al. (2007) in the sense that RHCwithMB
is no longer a static, but a dynamic controller.

On the other hand, the techniques we adopt in proving stability
differ drastically from those in RHC with MB. Since MB can de-
stroy recursive feasibility in RHC, the main issue in establishing
stability is how tomaintain recursive feasibility so that the optimal
cost is decreasing and can be used as a Lyapunov function as in
standard RHC (Cagienard et al., 2007; Gondhalekar & Imura, 2010;
Gondhalekar et al., 2009; Li et al., 2013; Shekhar & Maciejowski,
2012). In constrained estimation with MB, however, the optimal
cost is not monotonically decreasing. For FIE with MB, the optimal
cost proves to be monotonically nondecreasing with time (Propo-
sition 1, Corollary 1); for RHE with MB, the optimal cost is mono-
tonically nondecreasing for each N steps in time (Proposition 2
and Remark 3). These statements hold regardless of the MB size
w.r.t. the receding horizon length, and are key to obtaining stability
( Theorems 1–2).

The reminder of the paper is structured as follows. Section 2
recalls preliminaries on FIE and RHE, and proposes the idea of
MB in constrained estimation. Section 3 considers FIE with MB
and presents a detailed analysis of the SS of the PNS and stability
results. Section 4 discusses RHE with MB and possible extensions.
In Section 5, several numerical simulation results are presented.
Section 6 concludes the paper.
Notation: [a1, . . . , an] denotes [aT1 · · · aTn]

T, where a1, . . . , an are
scalars/vectors/matrices of proper dimensions. The weighted Eu-
clidean norm is denoted by ∥x∥2

R−1 = xTR−1x. Z and Z+ denote the
sets of non-negative and positive integers, respectively.I j

i denotes
the set of integers between i and j. OSt2

t1 denotes the optimization
steps (OS) between t1 and t2 for a given optimization problem. 1n
denotes a column vector of n dimension having 1 as its elements.
Given d = [d0, d1, . . .], dµ

τ = [dτ , . . . , dµ] denotes the truncation
of d between the τ th and the µth index. ⊗ denotes the Kronecker
product operation.

2. Preliminaries and problem formulation

Consider the discrete-time linear time-invariant system

xk+1 = Axk + Gwk, yk = Cxk + νk (1)

where, the state, the process and measurement noise vectors sat-
isfy xk ∈ X ⊂ Rn, wk ∈ W ⊂ Rm and νk ∈ V ⊂ Rq,

respectively; (A, C) is observable; the setsX ,W , and V are compact
and convex with W and V containing the origin in their interior.
Denote x(k; xs,wk−1

0 ) = Akxs +
∑k−1

i=0 A
k−i−1Gwi as the solution

of system (1) at the kth sampling time, with the initial state xs
and the noise sequence wk−1

0 = [w0, w1 · · · , wk−1]. Variables
(xk, wk, yk, νk) in (1) refer to the real process. They have associated
decision and optimal decision variables in optimization, which
we denote as (χk, ωk, ηk, υk) and (̂xk, ŵk, ŷk, ν̂k), respectively, and
these satisfy

χk+1 = Aχk + Gωk, yk = Cχk + υk, ηk = Cχk,

x̂k+1 = Âxk + Gŵk, yk = Cx̂k + ν̂k, ŷk = Cx̂k,

where, υk and ν̂k stand for the fitting error and the optimal fitting
error, respectively. Denote ωT−1

0 = [ω0, ω0 · · · , ωT−1], χk =

χ (k; χ0, ω
k−1
0 ), υk = yk − Cχk. The standard FIE in a prediction

form is:

FT :

⎧⎨⎩ min
χ0,ωT−1

0

φT s.t. χk ∈ X , k ∈ I T
0

ωk ∈ W , υk ∈ V, k ∈ I T−1
0

, (2)

where, φT =
χ0 − xg

2
Π

−1
0

+
∑T−1

k=0

[
∥υk∥

2
R−1 + ∥ωk∥

2
Q−1

]
, Π0, R,

Q > 0. In φT , (xg , Π0) summarizes the prior information at time
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