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a b s t r a c t

This note shows that the industry standard desired equilibrium for permanent magnet synchronous
motors (i.e, maximum torque per Ampere) can be globally asymptotically stabilized with a PI control
around the current errors, provided some viscous friction (possibly small) is present in the rotor dynamics
and the proportional gain of the PI is suitably chosen. Instrumental to establish this surprising result is
the proof that the map from voltages to currents of the incremental model of the motor satisfies some
passivity properties. The analysis relies on basic Lyapunov theory making the result available to a wide
audience.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Control of electric motors is achieved in the vast major-
ity of commercial drives via nested loop PI controllers (Krause,
1986; Leonhardt, 1996; Parker Automation, 1998): the inner one
wrapped around current errors and an external one that defines
the desired values for these currents to generate a desired torque—
for speed or position control. The rationale to justify this con-
trol configuration relies on the, often reasonable, assumption of
time-scale separation between the electrical and the mechanical
dynamics. In spite of its enormous success, to the best of our
knowledge, a rigorous theoretical analysis of the stability of this
scheme has not been reported. Themain contribution of this paper
is to (partially) fill-up this gap for the widely popular perma-
nent magnet synchronous motors (PMSM), proving that the inner
loop PI controller ensures global asymptotic stability (GAS) of the
closed-loop, provided some viscous friction (possibly arbitrarily
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small) is present in the rotor dynamics, that the load torque is
known and the proportional gain of the PI is suitably chosen, i.e.,
sufficiently high. The assumption of known load torque is later
relaxed proposing an adaptive scheme that, in the spirit of the
aforementioned outer-loop PI, generates, via the addition of a
simple integrator, an estimate for it—preserving GAS of the new
scheme.

Several globally stable position and velocity controllers for
PMSMs have been reported in the control literature—even in
the sensorless context, e.g., Bodson, Chiasson, Novotnak, and
Ftekowski (1993), Lee et al. (2010), Tomei and Verrelli (2008, 2011)
and references therein. However, these controllers have received
an, at best, lukewarm reception within the electric drives commu-
nity, which overwhelmingly prefers the aforementioned nested-
loop PI configuration. Several versions of PI schemes based on
fuzzy control, sliding modes or neural network control have been
intensively studied in applications journals, see Jung, Leu, Do, Kim,
and Choi (2015) for a recent review of this literature. To the best of
our knowledge, a rigorous stability analysis of all these schemes is
conspicuous by its absence.

The importance of disposing of a complete theoretical analysis
in engineering practice can hardly be overestimated. Indeed, it
gives the user additional confidence in the design and provides
useful guidelines in the difficult task of commissioning the con-
troller. The interest of our contribution is further enhanced by the
fact that the analysis relies on basic Lyapunov theory, using the
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natural (quadratic in the increments) Lyapunov function. Various
attempts to establish such a result for PMSMs have been reported
in the literature either relying on linear approximations of themo-
tor dynamics or including additional terms that cancel some non-
linear terms, see Hernandez-Guzman and Carrillo-Serrano (2011),
Hernandez-Guzman and Silva (2011) and references therein—a
standing assumption being, similarly to us, the existence of viscous
friction.

The remainder of this paper is organized as follows. Themodels
of the PMSM are given in Section 2. The problem formulation is
introduced in Section 3. The passivity of the PMSMs incremen-
tal model and the PI controller are established in Section 4. The
main stability results are provided in Section 5. Some concluding
remarks and discussion of future research are given in Section 6.

Notation. For x ∈ Rn, A ∈ Rn×n, A > 0 we denote |x|2 = x⊤x,
∥x∥2

A := x⊤Ax. For the distinguished vector x⋆
∈ Rn and a mapping

C : Rn
→ Rn×n, we define the constant matrix C⋆

:= C(x⋆).

Caveat Emptor. Due to page limitation constraints this is an
abridged version of the full paper, which may be found in Ortega,
Monshizadeh, Monshizadeh, Bazylev, and Pyrkin (2018).

2. Motor models

In this section we present the motor model, define the desired
equilibrium and give its incremental model.

2.1. Standard dq model

The dynamics of the surface-mounted PMSM in the dq frame
is described by Krause (1986) and Petrović, Ortega, and Stanković
(2001):

Ld
did
dt

= −Rsid + ωLqiq + vd

Lq
diq
dt

= −Rsiq − ωLdid − ωΦ + vq

J
dω
dt

= −Rmω + np
[
(Ld − Lq)idiq + Φiq

]
− τL

(1)

where id, iq are currents, vd, vq are voltage inputs,ω is the electrical
angular velocity.1 2np

3 is the number of pole pairs, Ld > 0, Lq > 0
are the stator inductances, Φ > 0 is the back emf constant, Rs > 0
is the stator resistance, Rm > 0 is the viscous friction coefficient,
J > 0 is the moment of inertia and τL is a constant load torque.

Defining the state and control vectors as

x :=

[id
iq
ω

]
, u :=

[
vd
vq

]
the system (1) can be written in compact form as

Dẋ + [C(x) + R]x = Gu + d,

where

D :=

⎡⎢⎣Ld 0 0
0 Lq 0

0 0
J
np

⎤⎥⎦ > 0,R :=

⎡⎢⎣Rs 0 0
0 Rs 0

0 0
Rm

np

⎤⎥⎦ > 0

C(x) :=

[ 0 0 −Lqx2
0 0 Ldx1 + Φ

Lqx2 −(Ldx1 + Φ) 0

]
= −C⊤(x)

1 Related with the rotor speed ωm via ω =
2np
3 ωm .

G :=

[1 0
0 1
0 0

]
, d :=

⎡⎢⎣ 0
0

−
τL

np

⎤⎥⎦ ,

Besides simplifying the notation, the interest of the represen-
tation above is that it reveals the power balance equation of the
system. Indeed, the total energy of the motor is

H(x) =
1
2
x⊤Dx,

whose derivative yields

Ḣ
stored power

= − x⊤Rx  
dissipated

+ y⊤u
supplied

− x3
τL

np
,  

extracted

(2)

where we used the skew-symmetry of C(x) and defined the cur-
rents as outputs, that is,

y := G⊤x =

[
id
iq

]
.

The current-feedback PI design is analysed in this paper viewing
it as a passivity-based controller (PBC)—a term that was coined
in Ortega and Spong (1989)—where the main idea is to preserve
a power balance equation like the one above but now with a
new stored energy and a new dissipation term. This objective is
accomplished in two steps, the shaping of the systems energy to
give it a desired form, i.e., to have a minimum at the desired equi-
librium, and the injection of damping. The shaped energy function
qualifies, then, as a Lyapunov function that ensures stability of the
equilibrium, which can be rendered asymptotically stable via the
damping injection.

Remark 1. See Ortega, Loria, Nicklasson, and Sira-Ramirez (1998)
and van der Schaft (2017) for additional discussion on the general
theory of PBC and its practical applications and Aranovskiy, Ortega,
and Cisneros (2016) and Zhang, Borja, Ortega, Liu, and Su (2018) for
some recent developments on PID-PBC.

2.2. Incremental model

The industry standard desired equilibrium is the maximum
torque per Ampere value defined as

x⋆
:= col

(
0,

1
npΦ

(τL + Rmω⋆), ω⋆

)
, (3)

where ω⋆ is the desired electrical speed. With respect to this
equilibrium we define the incremental model

D ˙̃x + C(x)x̃ + [C(x) − C⋆
]x⋆

+ Rx̃ = Gũ

ỹ = G⊤x̃, (4)

where ˜(·) := (·) − (·)⋆, C⋆
:= C(x⋆), and we used the fact that

(C⋆
+ R)x⋆

= Gu⋆
+ d

y⋆
= G⊤x⋆,

with

u⋆
=

⎡⎢⎣ −
1

npΦ
Lqω⋆(τL + Rmω⋆)

Φω⋆
+

1
npΦ

Rs(τL + Rmω⋆)

⎤⎥⎦ .

Note that

ỹ =

⎡⎣ x1

x2 −
1

npΦ
(τL + Rmω⋆)

⎤⎦ . (5)
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