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a b s t r a c t

This paper studies the problem of constructing in-block controllable (IBC) regions for affine systems. That
is, we are concerned with constructing regions in the state space of affine systems such that all the states
in the interior of the region are mutually accessible within the region’s interior by applying uniformly
bounded inputs.We first show that existing results for checking in-block controllability on givenpolytopic
regions cannot be easily extended to address the question of constructing IBC regions.We then explore the
geometry of the problem to provide a computationally efficient algorithm for constructing IBC regions.
We also prove the soundness of the algorithm. We then use the proposed algorithm to construct safe
speed profiles for robotic systems. As a case study, we present several experimental results on unmanned
aerial vehicles (UAVs) to verify the effectiveness of the proposed algorithm; these results include using
the proposed algorithm for real-time collision avoidance for UAVs.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

With the increasing desire for building the next generation of
engineering systems that can safely interact with their environ-
ment and possibly non-professional humans (e.g., self-driving cars
or assistive robots), there is an urgent need for developing con-
troller design methods that respect all given safety constraints of
the systems even in the transient period. Hence, we set our goal to
provide the mathematical foundations for controller design under
safety constraints. Although safety constraints can be accounted
for using optimal/predictive control strategies (Aswani, Gonzalez,
Sastry, & Tomlin, 2013; Qin & Badgwell, 2003), there are many
fundamental questions in the area of controller design under safety
constraints that still require further studies. For instance, consider
a wheeled robot moving on a bounded table, with additional
limits on the robot’s speed. Using Kalman’s controllability notion,
we cannot even answer the simple question whether the robot
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can reach, starting from any initial position and speed, any final
position and speed while respecting the safety constraints and
using uniformly bounded input force? This shows the urgent need
for finding checkable conditions for controllability under safety
constraints.

Hence, we recently introduced the study of in-block control-
lability (IBC), which formalizes controllability under given safety
state constraints (Helwa & Caines, 2014a, 2017). The notion of IBC
can, however, be motivated from several different perspectives. In
Helwa and Caines (2014c, 2015a), we showed that if one constructs
a special partition (cover) of the state space of piecewise affine
(PWA) hybrid systems (nonlinear systems) such that each region
of the partition (cover) satisfies the IBC property, then one can sys-
tematically study controllability and build hierarchical structures
for the PWAhybrid systems (nonlinear systems).Wenote that sim-
ilar to nonlinear systems, controllability of PWA hybrid systems is
a challenging open problem to date (Thuan & Camlibel, 2014). Also,
building hierarchical structures of dynamical systems allows us to
design controllers that achieve temporal logic statements at the
higher levels of the hierarchy, and then to systematically realize
these high-level control decisions at the lower levels. Moreover,
the IBC notion is useful in the context of optimal control prob-
lems. In particular, the IBC conditions ensure that all the optimal
accessibility problems within given safety constraints are feasible.
Furthermore, in this paper we use the IBC results to build safe
speed profiles for robotic systems. We then utilize these profiles
to achieve obstacle avoidance and to determine the feasibility of
given reference trajectories for the robots.
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The notion of IBC was utilized to build hierarchical structures
of finite state machines, nonlinear systems on closed sets, and
automata in Caines andWei (1995, 1998), and Hubbard and Caines
(2002), respectively. However, these papers do not study condi-
tions for when the IBC property holds. In Helwa and Caines (2014a,
2017), three necessary and sufficient conditions were provided for
IBC of affine systems on given polytopes. The conditions require
solving linear programming (LP) problems at the vertices of the
given polytope. In Helwa (2015), the IBC conditionswere extended
to controlled switched linear systems, while in Helwa and Caines
(2014b), the notion of IBC was relaxed to the case where one
can distinguish between soft and hard constraints. In Brammer
(1972) and Sontag (1984), controllability of linear systems under
input constraints was studied, while in Heemels and Camlibel
(2007), controllability of continuous-time linear systems under
state and/or input constraints was studied under the assumption
that the system transfer matrix is right invertible.

In many practical scenarios, however, it may happen that the
given affine system is not IBCwith respect to (w.r.t.) the given poly-
tope, representing the intersection of the given safety constraints.
Hence, it would be important from a practical perspective to find
the largest IBC region inside the given region, representing the
largest safe region within which we can fully control our system.
Also, constructing IBC regions is an essential problem for building
the partitions/covers in Helwa and Caines (2014c, 2015a), so that
one canmake use of the hierarchical control results of these papers.

In this paper, we first show the difficulties of directly using the
available results for checking IBC of affine systems on given poly-
topes to construct IBC regions. Second, we provide a computation-
ally efficient algorithm for constructing IBC polytopes, and prove
its soundness. Third, we show how our proposed algorithm can
be useful for constructing safe speed profiles for robotic systems.
That is, we construct for each position of the robot a corresponding
safe speed range. The proposed safe speed profiles are useful for
robot speed scheduling algorithms (Kant & Zucker, 1986; Ostafew,
Schoellig, Barfoot, & Collier, 2014). If the speed scheduling algo-
rithms limit the selected speeds to our proposed safe speed pro-
files, then safety of the robot can be always achieved on the given
constrained position space by applying a feasible input within
the actuation limits. We also show how the proposed safe speed
profiles can be used to achieve static/dynamic obstacle avoidance.
Moreover, our proposed algorithm guarantees full controllability
of the robots on the constructed position–speed regions. Hence,
in planning reference trajectories, it would be important to select
reference points inside the proposed safe position–speed regions
to ensure that they are reachablewithin the given state constraints
and under the actuation limits. Finally, we verify our proposed
results through several experimental results on unmanned aerial
vehicles (UAVs). Compared to the brief version (Helwa & Schoellig,
2016), we hereby include complete proofs, additional discussions
and remarks, and experimental results on UAVs.

Notation: Let K ⊂ Rn be a set. The closure of K is denoted by K ,
the interior by K ◦, and the boundary by ∂K . For vectors x, y ∈ Rn,
x · y denotes the inner product of the two vectors. The notation
∥x∥ denotes the Euclidean norm of x. The notation co {v1, v2, . . .}
denotes the convex hull of a set of points vi ∈ Rn.

2. Related work

Compared to the well-known controlled invariance problem
(Blanchini, 1999; Dorea & Hennet, 1999), which requires that all
the state trajectories initiated in a set to remain in the set for
all future time, IBC has the additional requirement of achieving
mutual accessibility. Also, unlike the invariant sets, we guarantee
that any state in the IBC set is reachable from any other state in
the IBC set within the set itself, and consequently, any state in the

IBC set can be selected as a point in a feasible reference trajectory
for the system. In the literature, several algorithms have been
provided for constructing controlled invariant sets. These algo-
rithms can be classified into twomain categories (Blanchini, 1999):
(i) iterative algorithms for finding the largest invariant polytopic
sets in given polytopes; these algorithms typically end up with
polytopeswith high complexity (Athanasopoulos, Bitsoris, & Lazar,
2014; Blanchini, 1999), and (ii) eigenstructure analysis algorithms
leading to invariant polytopes with low complexity (Blanchini,
1999). Nevertheless, we emphasize that these algorithms cannot
be used for building IBC regions, which are different from the
invariant regions. Our proposed algorithm is not iterative, and it
is based on exploring the geometric structure of the affine system,
which has some similarities to the eigenstructure analysis algo-
rithms for constructing invariant sets. Consequently, our algorithm
is computationally efficient, and it ends up with polytopic regions
with lowcomplexity,which facilitates the construction of feedback
laws on the constructed polytopes. For our geometric study of IBC,
we utilize some geometric tools used for the study of the reach
control problem (RCP) on polytopes; see Broucke (2010), Habets
and van Schuppen (2004) and Helwa and Broucke (2013, 2015).
Unlike RCP, in IBC, we do not try to force the trajectories of the
system to leave the polytope through a prescribed exit facet.

Compared to the feasibility study of Schoellig, Hehn, Lupashin,
and D’Andrea (2011), we hereby take the safety position/speed
constraints into consideration in determining the feasibility of
given references, and not only the robot actuation limits. In Sec-
tion 6, we verify that the proposed algorithm is computation-
ally efficient by utilizing it to build safe, controllable regions for
UAVs online. Then, a control law is provided on the safe region
to keep the system inside the region, and hence ensure dynamic
obstacle avoidance. Collision avoidance strategies may be classi-
fied into: (i) motion planning strategies, and (ii) reactive control
strategies (Rodriguez-Seda et al., 2014).Motion planning strategies
calculate a collision-free reference trajectory at initial sampling
time based on the estimated position of the obstacles. Fast replan-
ning of collision-free trajectories is needed for dynamic environ-
ments (Grzonka, Grisetti, & Burgard, 2012). On the other hand,
reactive control strategies continuously calculate updated control
inputs online based on obstacles detected. Thus, these strategies
are more suitable for fast-moving obstacles (Frew & Sengupta,
2004; Palafox & Spong, 2009; Rodriguez-Seda, Stipanovic, & Spong,
2011; Rodriguez-Seda et al., 2014). Our obstacle avoidance strategy
for UAVs is a reactive one, and it has similarities to the strat-
egy in Rodriguez-Seda et al. (2011) for fully-actuated robots and
in Rodriguez-Seda et al. (2014) for nonholonomic, two-wheeled,
ground vehicles. Unlikemost of the obstacle avoidance approaches
in the literature, see for instance (Frew & Sengupta, 2004; Palafox
& Spong, 2009), our strategy takes the robot dynamics and ac-
tuation limits into account, and does not put constraints on the
shape/velocity of the moving obstacle.

3. Background

We present some geometric background relevant for the re-
mainder of the paper, see Rockafellar (1970). A set K ⊂ Rn is affine
if λx + (1 − λ)y ∈ K for all x, y ∈ K and all λ ∈ R. If the affine
set passes through the origin, then it forms a subspace of Rn. For
subspacesA, B,A+B := {a+ b : a ∈ A, b ∈ B}. The setA+B is
also a subspace. The affine hull of a set K , denoted by aff (K ), is the
smallest affine set containing K .Wemean by a dimension of a set K
its affine dimension,which is the dimension of aff (K ). A hyperplane
is an (n − 1)-dimensional affine set in Rn, dividing Rn into two
open half-spaces. A finite set of vectors {x1, . . . , xk} is called affinely
independent if the unique solution to

∑k
i=1αixi = 0 and

∑k
i=1αi =

0 is αi = 0 for all i = 1, . . . , k. Affinely independent vectors do



Download English Version:

https://daneshyari.com/en/article/11027897

Download Persian Version:

https://daneshyari.com/article/11027897

Daneshyari.com

https://daneshyari.com/en/article/11027897
https://daneshyari.com/article/11027897
https://daneshyari.com

