Author's Accepted Manuscript

Surpassing the Conventional Limitations of CO₂ Separation Membranes with Hydroxide/Ceramic **Dual-Phase Membranes**

Maira R. Cerón, Li Sze Lai, Azadeh Amiri, Matthew Monte, Sindhu Katta, Jesse Kelly, Marcus A. Worsley, Matthew D. Merrill, Sangil Kim, Patrick G. Campbell

PII: S0376-7388(18)31820-9

DOI: https://doi.org/10.1016/j.memsci.2018.09.028

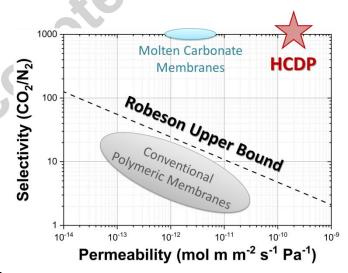
MEMSCI16473 Reference:

Journal of Membrane Science To appear in:

Received date: 2 July 2018 Revised date: 22 August 2018 Accepted date: 12 September 2018

Cite this article as: Maira R. Cerón, Li Sze Lai, Azadeh Amiri, Matthew Monte, Sindhu Katta, Jesse Kelly, Marcus A. Worsley, Matthew D. Merrill, Sangil Kim and Patrick G. Campbell, Surpassing the Conventional Limitations of CO₂ Separation Membranes with Hydroxide/Ceramic Dual-Phase Membranes, Journal of Membrane Science, https://doi.org/10.1016/j.memsci.2018.09.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


ACCEPTED MANUSCRIPT

Surpassing the Conventional Limitations of CO₂ Separation Membranes with Hydroxide/Ceramic Dual-Phase Membranes

Maira R. Cerón^a, Li Sze Lai^b, Azadeh Amiri^b, Matthew Monte^b, Sindhu Katta^b, Jesse Kelly^c, Marcus A. Worsley^a, Matthew D. Merrill^c, Sangil Kim^{b,d}, Patrick G. Campbell^{a,*}

Abstract:

We report the development of a dual-phase membrane for CO_2 separation based on a molten hydroxide liquid phase and a nanoporous yttria-stabilized zirconia solid support phase, termed hydroxide/ceramic dual-phase (HCDP) membranes, that can operate in the flue gas temperature range of 250-650 °C. HCDP membranes demonstrate selectivity for CO_2 over N_2 greater than 1,000 and CO_2 permeability of $1.78 \pm 0.16 \times 10^{-10}$ mol m m⁻²s⁻¹Pa⁻¹ (5.32 × 10⁵ barrer) at 550 °C with 20 vol% CO_2 , which is more than an order of magnitude greater than the best values for dual-phase and polymer membranes reported in the literature. We also demonstrate using three different experimental methods that CO_2 absorption by molten hydroxides is reversible in the presence of water vapor at temperatures as low as 300 °C.

Graphical Abstract:

Robeson plot comparing the performance of flue-temperature (250-650 $^{\circ}$ C) hydroxide/ceramic dual-phase (HCDP) membrane with ambient-temperature polymer and high-temperature molten carbonate dual-phase membranes.

^aMaterials Science Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550, United States

^bDepartment of Chemical Engineering, University of Illinois at Chicago, 801 S. Clinton St., Chicago, IL 60607, United States

^cLuna Innovations, 301 1st Street, SW, Suite 200, Roanoke, VA 24011, United States ^dDepartment of Chemical & Petroleum Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, United States

^{*}Corresponding author, campbell82@llnl.gov

Download English Version:

https://daneshyari.com/en/article/11027986

Download Persian Version:

https://daneshyari.com/article/11027986

<u>Daneshyari.com</u>