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A B S T R A C T

Uncertainty and physiological variability are ubiquitous in cardiac electrical signaling. It is important to
address the uncertainty and variability in cardiac modeling to provide reliable and realistic predictions of
heart function, thus ensuring trustworthy computer-aided medical decision-making and treatment planning.
Statistical techniques such as Monte Carlo (MC) simulations have been applied to uncertainty quantification
and propagation in cardiac modeling. However, MC simulation-based methods are computationally prohibi-
tive for complex cardiac models with a great number of parameters and governing equations. In this paper, we
propose to use the Generalized Polynomial Chaos (gPC) expansion in combination with Galerkin projection to
analytically quantify parametric uncertainty in ion channel models of mouse ventricular cell, and further
propagate the uncertainty across different organizational levels of cell and tissue. To identify the most sig-
nificant parametric uncertainty in cardiac ion channel and cell models, variance decomposition-based sensi-
tivity analysis was first performed. Following this, gPC was integrated with deterministic cardiac models to
propagate uncertainty through ion current, ventricular cell, 1D cable, and 2D tissue to account for the sto-
chasticity and cell-to-cell variability. As compared to MC, the gPC in this work shows the superior performance
in terms of computational efficiency. In addition, the gPC models can provide a measure of confidence in
model predictions, which can improve the reliability of computer simulations of cardiac electrophysiology for
clinical applications.

1. Introduction

Mathematical models of cardiac electrophysiology have been widely
used to advance the fundamental understanding of etiology and pa-
thophysiology of cardiac diseases, aid clinical diagnosis and prognosis,
and assist therapeutic design and treatment development. Since Noble's
first attempt to study the electrophysiology of a single cell with the
Hodgkin-Huxley model [1,2], cardiac models have become more de-
tailed due to the increased knowledge of ion channel gating and cardiac
electrical signaling. Current models of cardiac electrophysiology are
multiscale and highly complex, which integrate models across different
organizational levels of ion channel, cell, tissue, and the organ [3].
These models have been used to examine cardiac disease mechanisms,
optimize treatment and surgical planning. For example, the whole-heart
model has been applied in clinical settings to localize ablation therapy
[4], terminate cardiac arrhythmias [5], and design cardiac re-
synchronization therapy [6].

While cardiac models have shown the potentials, applications such as
model-based diagnosis and therapeutic design are still limited due to the
incapability of accounting for uncertainty and variability among in-
dividuals [7]. Uncertainty may originate from model assumptions, cali-
bration of model parameters using noisy data, intrinsic time varying
phenomena, and extrinsic cell-to-cell variability [8,9]. For example,
physiological variability constantly presents in ion channel gating, car-
diac electrical signaling, and electrical propagation in cardiac tissue, due
to the stochastic nature of ion channel gating [10] and the nonlinear
dynamics of alternans in cardiac action potential duration (APD) [8]. In
addition, Action Potential (AP) may change from cell to cell due to
quantities that genuinely vary among cells, e.g., cell size and ion channel
expression [11]. However, most of the available cardiac models are de-
terministic with fixed model parameters, which cannot account for un-
certainty. If the uncertainty in the cardiac models is not appropriately
addressed, computer experiments may fail to provide reliable predictions
and lead to false conclusions, thus misleading medical decisions [7].
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To improve the credibility and reliability of cardiac models, it is
necessary to quantify and propagate the uncertainty to obtain confident
model predictions (outputs). Uncertainty quantification and propaga-
tion techniques have been well developed in engineering and science
domains [12]. Computer models are often developed and calibrated
with data corrupted by various sources of uncertainty, which in turn
may introduce uncertainty in model parameters. Uncertainty quantifi-
cation and propagation typically assign probability distributions to
model parameters to represent parametric uncertainty, which can
subsequently be propagated onto model outputs to obtain a measure of
confidence in model predictions. Uncertainty quantification in cardiac
models has been previously studied [7,11–14]. For example, Romero
et al. investigated the effect of variability in ionic current on AP in
human ventricular myocytes [15]. Pathmanathan et al. [7] quantified
the variability in the steady-state inactivation of fast sodium current
among canine epi and endocardial cells, and further propagated the
uncertainty onto higher organizational levels to study the stochasticity
in upstroke velocity in AP and spiral wave dynamics in 2D tissue. Al-
though different uncertainty quantification methods were reported,
efficient algorithms that can be used to propagate parametric un-
certainty onto higher organizational scales in cardiac models have not
been extensively investigated [7,16].

Sampling-based techniques such as Monte Carlo (MC) simulations
are one of the most popular methods to propagate parametric un-
certainty onto model outputs [17]. For MC, samples are randomly
generated from the distribution of model parameters, simulations are
then performed with each sample. Based on the simulation results, the
variability in model outputs is approximated from a collection of the
simulated outputs. It should be noted that MC may require a large
number of simulations to ensure the convergence of the model pre-
dictions [18], which can be computationally prohibitive for complex
and nonlinear cardiac models. To reduce the computational burden and
improve the accuracy of uncertainty propagation, this work presents a
non-sampling based uncertainty analysis technique, i.e., generalized
polynomial chaos (gPC) expansion [19]. The gPC generally approx-
imates the distribution of parametric uncertainty with orthogonal
polynomial basis functions and propagates the uncertainty onto model
predictions (outputs) through first-principles models. One advantage of
the gPC is that it can provide analytical expressions of the statistical
moments of model predictions. As compared to MC, uncertainty pro-
pagation with gPC has been proved to be more efficient in terms of
computational time in different modeling, control, and optimization
problems [18,20–24]. Geneser et al. [16] introduced uncertainty in rate
coefficients of ion channel model, and applied gPC for uncertainty
propagation in ion channel gating. However, uncertainty was randomly
assigned to model parameters and the quantification of uncertainty was
only studied at the ion channel level, which cannot provide the in-
formation about the effect of uncertainty on higher organizational le-
vels such as cell and tissue. Using gPC, our previous work successfully
propagated parametric uncertainty onto K+ channel models [25].
However, the uncertainty propagation in higher organizational levels
was not studied.

Uncertainty propagation in cardiac models is challenging, since
models of cardiac electrophysiology are inherently multiscale and in-
volve a great level of complexity. These models generally integrate
cellular activities with tissue functions, where cellular activities are
regulated by the orchestrated function of transmembrane currents and
tissue functions are modeled as spatial-temporal propagation of elec-
trical waves. The cellular models often include numerous differential
equations coupled with over a hundred supporting equations. Further,
the cellular models can serve as sub-models of the tissue models, which
describe the electrical propagation in 2D/3D cardiac muscles using
partial differential equations (PDEs) and finite elements meshes. The
complexity of cardiac models poses great challenges on the gPC-based

uncertainty propagation as the coupled differential equations and
supporting equations can make it difficult to quantify uncertainty in
model outputs resulting from parametric uncertainty. The objective in
this work is to: (i) investigate the feasibility of the gPC-based un-
certainty propagation in multiscale cardiac models across different or-
ganizational levels of ion channel, cell, and tissue, and (ii) quantify the
effect of parametric uncertainty on model predictions in each organi-
zational level in a computationally efficient manner.

Cardiac models are described by many equations involving hun-
dreds of parameters. It is possible but not practical to consider un-
certainty in all model parameters. To improve efficiency, we propose to
identify the most sensitive parametric uncertainty. To identify the most
significant uncertainty, sensitivity analysis techniques can be used. For
example, Du et al. [3] used fractional factorial design to find sensitive
parameters under different response functions for model calibration,
and Johnstone et al. [8] used Gaussian process to find parametric un-
certainty in cardiac models. However, these techniques concentrate on
the sensitivity in the vicinity of the mean value of parameter and may
fail to identify the most significant uncertainty. To overcome this issue,
the variance decomposition-based sensitivity analysis method is used in
this work to identify the parametric uncertainty that has the most sig-
nificant impact on the variability in the outputs of ion channel models
and the cardiac cell model. Based on the sensitivity analysis results, a
prior known distribution will be assigned to the significant parameters
to approximate uncertainty, which will be further propagated onto ion
currents, cardiac cell, and tissue. Specifically, different characteristics,
e.g., Steady State Activation (SSA) and Inactivation (SSI) in ion channel,
APDs in cardiac cell, and spiral wave propagation in tissue, are quan-
tified in order to visualize the effect of parametric uncertainty on model
outputs. Additionally, the efficiency and accuracy of gPC are in-
vestigated and verified with MC simulations. Note that for algorithm
clarification the Bondarenko's mouse ventricular model [26] is used in
this work for propagating parametric uncertainty onto higher organi-
zational levels of heart through multiscale cardiac models. We delib-
erately chose this model since it can provide detailed gating kinetics in
ion channels, and it is considered sufficiently complicated to illustrate
the computational efficiency of gPC.

The rest of this paper is organized as follows. Section 2 presents the
research methodologies followed by design of computer experiments in
Section 3. Simulation results and discussion are provided in Sections 4
and 5, which is followed by conclusions in Section 6.

2. Background and methodologies

2.1. Generalized polynomial chaos expansion

The generalized polynomial chaos (gPC) expansion approximates
uncertainty as a function of another random variable based on a pre-
scribed distribution from Askey-Wiener scheme [19]. Suppose a cardiac
model can be defined with a nonlinear ordinary differential equation
(ODE) as:

= ≤ ≤ =σ θdy
dt

g t y t T y y( , , , ), 0 , (0) 0 (1)

where g is a nonlinear function of cardiac model, e.g., the ion channel
model, and y is a gating variable (i.e., output), e.g., the gating variable
of activation or inactivation, with initial condition y0 over a finite time
domain [0, T], θ and σ are model parameters. In this current work, θ
denotes a vector of parametric uncertainties (i.e. input uncertainty)
while σ is a vector of deterministic parameters defined with fixed va-
lues. Note that each parametric uncertainty in θ will be described with a
probability density function (PDF) around a particular mean value and
specific variance in this work. The uncertainty in each parameter of θ
may originate from time-varying phenomena such as stochasticity in
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