Accepted Manuscript

Regular paper

A Fractal Metamaterial based Printed Dipoles on a Nickel Oxide Polymer Palm Fiber Substrate for Wi-Fi Applications

Taha A. Elwi, B.A. Ahmad

PII: \$1434-8411(18)31305-0

DOI: https://doi.org/10.1016/j.aeue.2018.09.020

Reference: AEUE 52499

To appear in: International Journal of Electronics and Communi-

cations

Please cite this article as: T.A. Elwi, B.A. Ahmad, A Fractal Metamaterial based Printed Dipoles on a Nickel Oxide Polymer Palm Fiber Substrate for Wi-Fi Applications, *International Journal of Electronics and Communications* (2018), doi: https://doi.org/10.1016/j.aeue.2018.09.020

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A Fractal Metamaterial based Printed Dipoles on a Nickel Oxide Polymer Palm Fiber Substrate for Wi-Fi Applications

Taha A. Elwi and B. A. Ahmad

Communication Department Engineering, Al-Mammon University College, Baghdad.

Iraq.

Abstract: In this paper, a novel antenna circuit based metamaterial (MTM) structures is proposed for Wi-Fi applications. The antenna consists of two dipoles with 3×5 Hilbert shaped MTM array printed with Sliver Nanoparticles Conductive Ink (SNPCI). The antenna substrate is mainly created from INP composite of: Iraqi Palm Tree Remnants (IPTR) and Nickel Oxide Nanoparticles (NONP) with Polyethylene (PE) mixture. The relative permittivity ($\varepsilon_{\rm r}$) and permeability ($\mu_{\rm r}$) are measured using an open-stub microstrip resonator to find ε_r =3.106-j0.0314 and μ_r =1.548-j0.0907 at the frequency band of interest. Numerically, Finite Integral Technique (FIT) and Finite Element Method (FEM) of CSTMWS and HFSS formulations, respectively, are invoked to investigate the antenna performance. Experimentally, the antenna exhibits two resonances, $|S_{11}|<-10$ dB, at 2.45GHz and 5.8GHz with gain of 2.6dBi and 4.8dBi, respectively. The antenna shows a bandwidth of 500 MHz around the first resonance and 2 GHz at the second resonance. The measured radiation patterns at the two resonances are found to be mainly directed toward the antenna end fire with radiation efficiency of 0.8 and 0.65 at the first and second modes, respectively. Finally, the proposed antenna performance is compared against a reference antenna to reveal the excellent enhancements.

Keywords: Fractal, metamaterial, polymer, dipole, open-stub.

Download English Version:

https://daneshyari.com/en/article/11028110

Download Persian Version:

https://daneshyari.com/article/11028110

<u>Daneshyari.com</u>