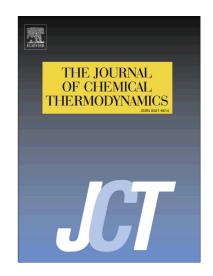
Accepted Manuscript

Physical properties of aqueous mixtures of (choline chloride + glucose) deep eutectic solvents

Marziyeh Moghimi, Aliakbar Roosta

PII: S0021-9614(18)30605-0


DOI: https://doi.org/10.1016/j.jct.2018.09.029

Reference: YJCHT 5558

To appear in: J. Chem. Thermodynamics

Received Date: 7 June 2018

Revised Date: 27 September 2018 Accepted Date: 28 September 2018

Please cite this article as: M. Moghimi, A. Roosta, Physical properties of aqueous mixtures of (choline chloride + glucose) deep eutectic solvents, *J. Chem. Thermodynamics* (2018), doi: https://doi.org/10.1016/j.jct.2018.09.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Physical properties of aqueous mixtures of (choline chloride + glucose) deep

eutectic solvents

Marziyeh Moghimi, Aliakbar Roosta*

Department of Chemical, Petroleum and Gas Engineering, Shiraz University of Technology,

Shiraz, Iran

*Corresponding author: aa.roosta@sutech.ac.ir

Tel: +98-7137354520

Fax: +98-7137354520

Abstract

Despite the importance of temperature-dependent density and viscosity data of ternary

aqueous mixtures of DESs, experimental studies to determine these essential data have been

rather limited. In the current study, the density and kinematic viscosity of the aqueous solutions

of choline (chloride+glucose) DESs have been measured over the temperature range of (293.15-

323.15) K and DESs concentration of about (1-10) mole%. Following the measurement of

bubble temperature of the mixtures at 82.6 kPa, excess molar volumes, dynamic viscosities,

viscosity deviations, and also activity coefficients of water in the mixture were calculated. In

addition, suitable correlations have been proposed to represent the temperature and composition

dependence of the density, kinematic viscosity and also dynamic viscosity data. All in all, the

negative values of the excess molar volume, the positive values of dynamic viscosity deviation,

alongside the activity coefficients with values less than unity denote negative deviation from

ideality of the system studied. It was also observed that both the density and kinematic viscosity

decrease with increasing temperature, while they tend to increase with higher mole fractions of

DES.

1

Download English Version:

https://daneshyari.com/en/article/11028254

Download Persian Version:

https://daneshyari.com/article/11028254

<u>Daneshyari.com</u>