Full Length Article

On weighted approximation with Jacobi weights

K.A. Kopotun ${ }^{\text {a,* }}$, D. Leviatan ${ }^{\text {b }}$, I.A. Shevchuk ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
${ }^{\mathrm{b}}$ Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 6139001, Israel
${ }^{\text {c }}$ Faculty of Mechanics and Mathematics, National Taras Shevchenko University of Kyiv, 01033 Kyiv, Ukraine

Received 2 January 2018; received in revised form 27 June 2018; accepted 4 September 2018
Available online 11 September 2018

Communicated by András Kroó

Abstract

We obtain matching direct and inverse theorems for the degree of weighted L_{p}-approximation by polynomials with the Jacobi weights $(1-x)^{\alpha}(1+x)^{\beta}$. Combined, the estimates yield a constructive characterization of various smoothness classes of functions via the degree of their approximation by algebraic polynomials. In addition, we prove Whitney type inequalities which are of independent interest. (c) 2018 Elsevier Inc. All rights reserved.

MSC: 41Axx
Keywords: Approximation by polynomials in weighted L_{p}-norms; Degree of approximation; Direct and inverse theorems; Jacobi weights; Moduli of smoothness; Characterization of smoothness classes; Whitney-type estimates

1. Introduction and main results

In this paper, we are interested in weighted polynomial approximation with the Jacobi weights

$$
w_{\alpha, \beta}(x):=(1-x)^{\alpha}(1+x)^{\beta}, \quad \alpha, \beta \in J_{p}:= \begin{cases}(-1 / p, \infty), & \text { if } 0<p<\infty \\ {[0, \infty),} & \text { if } p=\infty\end{cases}
$$

[^0]https://doi.org/10.1016/j.jat.2018.09.003
0021-9045/CC 2018 Elsevier Inc. All rights reserved.

Let $L_{p}^{\alpha, \beta}(I):=\left\{f \mid\left\|w_{\alpha, \beta} f\right\|_{L_{p}(I)}<\infty\right\}$, where $\|\cdot\|_{L_{p}(I)}$ is the usual L_{p} (quasi)norm on the interval $I \subseteq[-1,1]$, and, for $f \in L_{p}^{\alpha, \beta}(I)$, denote by

$$
E_{n}(f, I)_{\alpha, \beta, p}:=\inf _{p_{n} \in \mathbb{P}_{n}}\left\|w_{\alpha, \beta}\left(f-p_{n}\right)\right\|_{L_{p}(I)}
$$

the error of best weighted approximation of f by polynomials in \mathbb{P}_{n}, the set of algebraic polynomials of degree not more than $n-1$. For $I=[-1,1]$, we denote $\|\cdot\|_{p}:=\|\cdot\|_{L_{p}[-1,1]}$, $L_{p}^{\alpha, \beta}:=L_{p}^{\alpha, \beta}([-1,1]), E_{n}(f)_{\alpha, \beta, p}:=E_{n}(f,[-1,1])_{\alpha, \beta, p}$, etc.

Definition 1.1 ([10]). For $r \in \mathbb{N}_{0}$ and $0<p \leq \infty$, denote $\mathbb{B}_{p}^{0}\left(w_{\alpha, \beta}\right):=L_{p}^{\alpha, \beta}$ and

$$
\mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right):=\left\{f \mid f^{(r-1)} \in A C_{l o c}(-1,1) \quad \text { and } \quad \varphi^{r} f^{(r)} \in L_{p}^{\alpha, \beta}\right\}, \quad r \geq 1
$$

where $\varphi(x):=\sqrt{1-x^{2}}$ and $A C_{l o c}(-1,1)$ denotes the set of functions which are locally absolutely continuous in $(-1,1)$.

We remark that, in the case $p<1$, our definition of derivatives is understood in the classical sense, i.e., the assumption $f^{(r-1)} \in A C_{l o c}(-1,1)$ in the case $r \geq 2$ is understood in the sense that f is the $(r-1)$ st integral of a locally absolutely continuous $\bar{f}^{(r-1)}$ plus a polynomial of degree $r-2$.

As is common when dealing with L_{p} spaces, we will not distinguish between a function in $\mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right)$ and all functions which are equivalent to it in $L_{p}^{\alpha, \beta}$.

Definition 1.2 ([10]). For $k, r \in \mathbb{N}$ and $f \in \mathbb{B}_{p}^{r}\left(w_{\alpha, \beta}\right), 0<p \leq \infty$, define

$$
\begin{equation*}
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}:=\sup _{0 \leq h \leq t}\left\|\mathcal{W}_{k h}^{r / 2+\alpha, r / 2+\beta}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{p} \tag{1.1}
\end{equation*}
$$

where

$$
\mathcal{W}_{\delta}^{\xi, \zeta}(x):=(1-x-\delta \varphi(x) / 2)^{\xi}(1+x-\delta \varphi(x) / 2)^{\zeta}
$$

and

$$
\Delta_{h}^{k}(f, x):= \begin{cases}\sum_{i=0}^{k}\binom{k}{i}(-1)^{k-i} f\left(x-\frac{k h}{2}+i h\right), & \text { if }\left[x-\frac{k h}{2}, x+\frac{k h}{2}\right] \subseteq[-1,1] \\ 0, & \text { otherwise },\end{cases}
$$

is the k th symmetric difference.
For $\delta>0$, denote (see [9])

$$
\mathfrak{D}_{\delta}:=\{x|1-\delta \varphi(x) / 2 \geq|x|\} \backslash\{ \pm 1\}=[-1+\mu(\delta), 1-\mu(\delta)]
$$

where

$$
\mu(\delta):=2 \delta^{2} /\left(4+\delta^{2}\right)
$$

We note that $\mathfrak{D}_{\delta_{1}} \subset \mathfrak{D}_{\delta_{2}}$ if $\delta_{2}<\delta_{1} \leq 2$, and that $\mathfrak{D}_{\delta}=\emptyset$ if $\delta>2$. Also, since $\Delta_{h \varphi(x)}^{k}(f, x)=0$ if $x \notin \mathfrak{D}_{k h}$,

$$
\begin{equation*}
\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}=\sup _{0<h \leq t}\left\|\mathcal{W}_{k h}^{r / 2+\alpha, r / 2+\beta}(\cdot) \Delta_{h \varphi(\cdot)}^{k}\left(f^{(r)}, \cdot\right)\right\|_{L_{p}\left(\mathfrak{D}_{k h}\right)} \tag{1.2}
\end{equation*}
$$

In particular, $\omega_{k, r}^{\varphi}\left(f^{(r)}, t\right)_{\alpha, \beta, p}=\omega_{k, r}^{\varphi}\left(f^{(r)}, 2 / k\right)_{\alpha, \beta, p}$, for all $t \geq 2 / k$.
Following [10] we also define the weighted averaged moduli.

https://daneshyari.com/en/article/11028542

Download Persian Version:
https://daneshyari.com/article/11028542

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Kirill.Kopotun@umanitoba.ca (K.A. Kopotun), leviatan@post.tau.ac.il (D. Leviatan), shevchukh@ukr.net (I.A. Shevchuk).

