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Smooth fixed volume discrepancy, dispersion,
and related problems

V.N. Temlyakov*

Abstract

It is proved that the Fibonacci and the Frolov point sets, which
are known to be very good for numerical integration, have optimal
rate of decay of dispersion with respect to the cardinality of sets.
This implies that the Fibonacci and the Frolov point sets provide
universal discretization of the uniform norm for natural collections of
subspaces of the multivariate trigonometric polynomials. It is shown
how the optimal upper bounds for dispersion can be derived from
the upper bounds for a new characteristic — the smooth fixed volume
discrepancy. It is proved that the Fibonacci point sets provide the
universal discretization of all integral norms.

1 Introduction

The concept of dispersion of a point set is an important geometric charac-
teristic of a point set. It was established in a recent paper [21] that the
property of a point set to have the minimal in the sense of order dispersion
is equivalent, in a certain sense, to the property of the set to provide uni-
versal discretization in the L., norm for natural collections of subspaces of
the multivariate trigonometric polynomials. In this paper we study decay of
dispersion of the Fibonacci and the Frolov point sets with respect to the car-
dinality of sets. We remind the definition of dispersion. Let d > 2 and [0,1)?
be the d-dimensional unit cube. For x,y € [0,1)¢ with x = (z1,...,74) and
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