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A B S T R A C T

Meeting future food demands for 9 billion people in the next 30 years will require either agricultural expansion
or intensification to increase production. However, agriculture is already a major driver of biodiversity loss, as
well as freshwater withdrawals, nutrient inputs, and greenhouse gasses, among other pressing environmental
issues. In this paper, we look for solutions to this production-conservation challenge at the subfield scale. We use
precision agriculture yield data from three farms in Southern Ontario and convert them into “profit maps” that
show which regions of a field have management costs that exceed the market value of the commodities pro-
duced. We analyse the profit of three farms over time and identify areas that consistently show low or negative
profit and thus constitute a compelling case for taking these areas out of production. We find, for example, that
up to 14% of farmland can result in money loss and even more than 50% of the land might still not meet
minimum revenue expectations. Further, we assess the economic feasibility of conservation strategies on these
set-aside lands and find that investing in environmental benefits (even minimally) can often times be inexpensive
when compared with economic losses due to failed harvests. We argue that profit mapping can serve as a
management tool for farmers that will allow them to identify optimal crop areas, optimize nutrient inputs, plan
for ecological intensification, and avoid economic loss all while providing ecosystem services at the local scale.

1. Introduction

The expected human population of 9.7 billion by 2050 will demand
a 70% increase in food production (Holt-Giménez and Altieri, 2013;
Fraser et al., 2016). Agriculture already produces enough calories for
the current population; however, due to systemic problems linked with
poverty, approximately 800 million people are undernourished and 2
billion people experience micronutrient deficiency (FAO et al., 2018).
On top of this, agriculture is a critical economic activity for the liveli-
hood of 40% of the world's population and represents 30% of the gross
domestic product in low-income countries (Ramankutty et al., 2018).
As a consequence, there will be a demand for the further expansion or
intensification of agricultural production (De Marsily and Abarca-Del-
Rio, 2016; Rizvi et al., 2018).

The expansion of agricultural and urban areas has already led to the
conversion of 43% of the Earth's land (Barnosky et al., 2011) and is
currently the major cause of habitat loss and biodiversity decline
(Laurance et al., 2014). Agriculture alone is responsible for the

conversion of 70% of grasslands, 50% of savannahs, 45% of temperate
deciduous forests, and 27% of tropical forests (Foley et al., 2011;
Pagnutti et al., 2013). Industrial agriculture —alongside mining and
energy infrastructure —results is the loss of 5 million ha of forests every
year (Curtis et al., 2018). Additionally, agriculture demands 70% of
freshwater withdrawals and has already pushed two thirds of the global
rivers' basins beyond their capacity to buffer nutrient inputs (German
et al., 2017). Agricultural and grazing practices combined are re-
sponsible for the soil degradation of 23% of the world's arable land
(Grunwald et al., 2011), which in turn results in the demand of more
land conversion (Laurance et al., 2014). As for greenhouse gasses,
agriculture accounts for up to 30% of emissions, including those ori-
ginating from ruminant animals, land use change, fertilizers use, and
fossil fuels (Garnett, 2011).

Approaches for biodiversity conservation have been shifting over
time as a result of how relationships between people and nature are
viewed (Mace, 2014). Currently, in agricultural systems, part of the
conservation debate revolves around the “land sharing / land sparing”
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dilemma (Green et al., 2005). Land sparing refers to strictly protect
some land while intensively farming on smaller land footprints, while
land sharing intends to establish less areas for strict biodiversity con-
servation but to carefully utilize larger land footprints (Durán et al.,
2014; Kremen, 2015). Although there is evidence to support both al-
ternatives and the debate is ongoing (Kremen, 2015), land sparing is
more commonly adopted around the world (Mertz and Mertens, 2017).
Nonetheless, in agricultural systems, authors consider than when small
and dispersed fragments of land are spared, land-sharing landscapes are
created (Kremen, 2015).

Another approach for conservation in agricultural lands has focused
on protecting ecosystem services —benefits that people obtain from
ecosystems. Agriculture depends on services such as nutrient and water
cycling, the maintenance of soil quality, and pest regulation, and in turn
provides value services such as crop production, fibres, and energy
(Schipanski et al., 2014). However, under appropriate management
practices, agricultural lands can also provide non-value ecosystem
services —air quality, soil carbon storage, habitat for biodiversity, and
landscape aesthetics (Rapidel et al., 2015). For example, crop rotations
—as opposed to monocultures— can increase soil carbon and total ni-
trogen, and soil microbial biomass carbon and nitrogen (McDaniel
et al., 2014). Also, pest-tolerant and resistant cultivars can reduce over-
reliance on pesticides and thus their runoff into natural systems
(Barzman et al., 2015). Moreover, cover crops can reduce soil erosion
and compaction, better soil structural and hydraulic properties, and
supress weed growth (McDaniel et al., 2014; Blanco-Canqui et al.,
2015). The interdependence of humans and nature is such, that global
ecosystem services have been valued at US$125 trillion/year (Costanza
et al., 2014). Acknowledging this economic value can improve the ef-
fective management of ecosystems and guide the design of economic
incentives such as payment for ecosystem services (Costanza et al.,
2017).

Given the spatial heterogeneity of agricultural landscapes (e.g. soil
type, slope, nutrient levels, moisture content), the optimization of
production and conservation in agroecosystems requires spatially ex-
plicit analyses and technologies. The term ‘precision conservation’, has
emerged as a way of describing approaches that aim to conserve soil
and water in agricultural and natural lands, based on a combination of
spatial technologies (such as global positioning systems, remote sen-
sing, or geographic information systems) and procedures (such as map
analysis, surface modeling, spatial data mining) (Berry et al., 2005).
Precision conservation is also related to ‘precision agriculture’, which is
defined as “techniques that monitor and optimize production processes
… thereby conceivably increasing yields and outputs and improving the
efficiency and effectiveness of inputs” (Fraser, 2018). This includes
utilizing technological innovations including ‘robot farmers’, self-
driving tractors, software codes, computational models, and the crea-
tion and storage of big data on agricultural practices, productivity and
yields, and biophysical properties of the land (Fraser, 2018). En-
vironmentally speaking, precision agriculture has been successfully
applied to avoid excessive chemical inputs in soil, reduce carbon foot-
print in field operations, reduce herbicide and pesticide use, and
monitor plant health (Schrijver et al., 2016). From an economic
standpoint, precision agriculture contributes to food safety by better
predicting on the quality and quantity of agricultural products, redu-
cing expenses, and monitoring the food chain (Schrijver et al., 2016). In
addition, precision agriculture can help plan for the “sustainable in-
tensification” of agricultural production, as increases in yields should
be strategically sought through a context- and location-specific ap-
proach (Garnett et al., 2013).

One particular use of precision agriculture, profit mapping, has
gained momentum as a tool to motivate producers to set aside un-
profitable lands for conservation for addressing areas that are prone to
environmental risks such as soil erosion (Muth, 2014). Brandes et al.
(2016), in a similar analysis, identified “hotspots” for “potential man-
agement change”. In this paper, we use precision agriculture data to

demonstrate how precision agriculture technologies can be used to in-
crease environmental benefits in Southern Ontario's agricultural lands
by putting agricultural production and alternate management scenarios
on the same economic footing. We show the use of precision agriculture
yield crop data as a way of developing high-resolution profit maps of
farms. We then use these maps to identify areas, at the subfield scale,
that consistently show low or negative profit and thus could be set aside
for conservation and increased ecosystem services. We also assess the
economic feasibility of eight strategies that could promote biodiversity
and ecosystem services on such low profit areas. We work under two
hypotheses: a) areas of consistent low or negative profit can be detected
by the use of precision agriculture and profit mapping, and b) investing
in conservation strategies on these low profit areas can be more eco-
nomically feasible than investing (and losing money) in agriculture.

2. Methods

2.1. Study area

The province of Ontario accounts for 25% of Canada's farmland and
20% of the country's gross farm receipts (Statistics Canada, 2017). In
Ontario, 50,000 farms spread over 5 million ha (OMAFRA 2017).
Soybeans and corn find their largest production in this province, ac-
counting for almost 60 and 50% of their cultivated area, respectively.
To enhance biodiversity, interrupt pest cycles, and increase nutrient
efficiency, soybean and corn are usually rotated with wheat (Statistics
Canada, 2017). We worked on three farms —namely A (82.15 ha), B
(23.07 ha), and C (29.95 ha)— that have been on a soybean, corn, and
wheat rotation for the past 10 years. The farms are located in Well-
ington County (between 80° and 81°W, and 43°30′ and 44°N), near the
cities of Fergus and Rockwood. Although in this County the farm
average size is 56.25 ha, farmers are likely responsible for grater extents
of land, as most of them work their own farms and rent additional land
(Cummings et al., 2006). In this area, the surface deposits are in its
majority of glacial origin and formed the parent material from which
soils have developed (typically loamy soils within the study region).
The terrain also presents many low broad oval hills with smooth slopes
characteristic of drumlins. Overall, the soils are well drained and sui-
table for agriculture (Hoffman et al., 1963; Chapman and Putnam,
1984).

2.2. Calculation of profitability

We obtained precision agriculture data from the farm owners, who
conduct yield and plant population monitoring and use Geographic
Positioning Systems (GPS) technologies to produce high-resolution
maps of their farm yield. The data we used consisted on yield mea-
surements (bushels acre−1) obtained from harvest yield monitors.
These monitors use optical sensors to measure yield and are installed on
combines. Here, we converted yield data to kg ha−1 assuming corn
weighs 25.40 kg bushel−1 (OMAFRA, 2018a) whereas soybeans and
wheat weigh 27.70 kg bushel−1 (OMAFRA 2018b and 2018c). Yield
data points were spaced out between 1.5 and 10m, resulting in an
average density of 808 yield points ha−1 for farm A, 919 yield points
ha−1 for farm B, and 755 yield points ha−1 for farm C.

We used four years (2013–16) of data for farm A, five years for farm
B (2011, 2013–16), and nine years (2001, 2003–04, 2006, 2010–11,
2014–16) for farm C. To estimate profitability, we consulted the
Ontario Ministry for Agriculture, Food, and Rural Affairs' (OMAFRA)
provincial estimates of field crop budgets and grain market prices for
each year. Estimates of field crop budgets included the cost of growing
each crop based on operating (e.g. seeds, fertilizers, herbicides, tractor
and machine expenses, crop insurance, labour work) and overhead (e.g.
depreciation of machinery, interest on investment) expenses per acre
(OMAFRA, 2001–2016). Grain market prices consisted on the pro-
vincial average market price per bushel (OMAFRA, 2018d). We
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