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ARTICLE INFO ABSTRACT

The objective of this study is to investigate spatial structures of error in the assessment of continuous raster data.
The use of conventional diagnostics of error often overlooks the possible spatial variation in error because such
diagnostics report only average error or deviation between predicted and reference values. In this respect, this
work uses a moving window (kernel) approach to generate geographically weighted (GW) versions of the mean
signed deviation, the mean absolute error and the root mean squared error and to quantify their spatial varia-
tions. Such approach computes local error diagnostics from data weighted by its distance to the centre of a
moving kernel and allows to map spatial surfaces of each type of error. In addition, a GW correlation analysis
between predicted and reference values provides an alternative view of local error. These diagnostics are applied
to two earth observation case studies. The results reveal important spatial structures of error and unusual
clusters of error can be identified through Monte Carlo permutation tests. The first case study demonstrates the
use of GW diagnostics to fractional impervious surface area datasets generated by four different models for the
Jakarta metropolitan area, Indonesia. The GW diagnostics reveal where the models perform differently and
similarly, and found areas of under-prediction in the urban core, with larger errors in peri-urban areas. The
second case study uses the GW diagnostics to four remotely sensed aboveground biomass datasets for the
Yucatan Peninsula, Mexico. The mapping of GW diagnostics provides a means to compare the accuracy of these
four continuous raster datasets locally. The discussion considers the relative nature of diagnostics of error,
determining moving window size and issues around the interpretation of different error diagnostic measures.
Investigating spatial structures of error hidden in conventional diagnostics of error provides informative de-
scriptions of error in continuous raster data.
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1. Introduction

All spatial data are subject to error. Remotely sensed (RS) imagery
routinely contains sensor-related errors, atmospheric effects, and geo-
metric errors. Environmental datasets that describe landscape features
and properties from RS products (e.g. forest aboveground biomass,
species distribution, and climate change scenarios) inherently contain
prediction errors. Errors can manifest themselves as systematic devia-
tions and/or noise which require careful assessment in order to avoid
mis-interpretations of the data, to support reliable conclusions and to
make informed decisions (Daly, 2006; Foody, 2002). Error assessments
provide a guide to data quality and reliability (Foody, 2002) and can
provide earth observation (EO) scientists with an understanding of the
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sources of error both in RS imagery and products (Liu et al., 2007;
Stehman and Czaplewski, 1998). However, conventional summary
measures of error do not take any spatial information (e.g. spatial
heterogeneity) of error into account (Foody, 2005, 2002). Spatially
explicit approach for the assessment is hence important.

In EO studies, spatial extensions of conventional diagnostics of error
or accuracy have been demonstrated for categorical raster data, such as
land cover classification data (Comber et al., 2017, 2012; Comber,
2013; Congalton, 1988; Foody, 2005). These approaches spatially ex-
tend the usual method of estimating and reporting accuracy through a
confusion matrix, which is the cross-tabulation of predicted and re-
ference classes to generate measures of user’s and producer’s accuracy
that correspond to commission and omission errors, respectively, along
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Fig. 1. The spatial distribution of the training (left) and reference (right) sample of fractional impervious surface area (%) in the Jakarta metropolitan area,

Indonesia.

with an overall accuracy (Congalton, 1991; Stehman and Czaplewski,
1998). Specifically, Comber (2013) demonstrated the use of a geo-
graphically weighted (GW) approach to generate spatial surfaces of
these measures. The GW approach calculates a series of local diag-
nostics of accuracy, using data weighted by their distance to the centre
of a moving window or kernel to explore spatial heterogeneity (Gollini
et al., 2015). This has been used to compare global land cover datasets
(Comber et al., 2013), to assess the consistency of such classification
over time (Tsutsumida and Comber, 2015), and to construct hybrid
global land cover datasets from multiple inputs (See et al., 2015).
Comber et al. (2017) proposed GW confusion matrices for further
generic applications. The GW framework itself (Fotheringham et al.,
2002; Gollini et al., 2015; Lu et al., 2014) has been widely adopted
across many scientific disciplines (e.g. Geography, Ecology, Health),
where GW regression (Brunsdon et al., 1996) is the most popular GW
model.

The developments of spatially explicit approaches for error assess-
ment in continuous raster data in the EO domain have been limited.
Comber et al. (2012) proposed a fuzzy GW difference analysis which
estimates absolute deviations between the predicted and reference
fuzzy membership, essentially applying a fuzzy generalization of the
categorical accuracy measures. Khatami et al. (2017) proposed a spatial
interpolation approach for soft classification maps in which a linear
kernel function was applied to interpolate spatial deviations between
predicted and reference proportions, with a focus on weight of spectral
or class proportion as a soft classification measure. Willmott and
Matsuura (2006) described maps of cross-validation error. Continuous
raster data are commonly assessed using mean signed deviation (msd),
mean absolute error (mae), root mean square error (rmse) and Pear-
son’s correlation coefficient (r). Accurate predictions are reflected by
msd, mae and rmse to be zero, coupled with r to be one. Although these
conventional diagnostics are useful in reporting error, each of them
provides an overall, global or ‘whole map’ measure only. In this respect,
Harris and Juggins (2011) demonstrated GW r for assessing UK fresh-
water acidification prediction accuracy. Harris et al. (2013) demon-
strated GW mae for UK freshwater acidification and London house price
prediction accuracy, as separate case studies. Monteys et al. (2015)
demonstrated GW r for assessing water depth prediction accuracy in
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Irish coastal waters. These studies either directly extend GW summary
statistics (e.g. GW averages, GW variances) as first proposed by
Brunsdon et al. (2002), or directly use GW r (Fotheringham et al.,
2002), but in a model accuracy context. Further advances of GW
summary statistics can be found in Harris and Brunsdon (2010) and
Harris et al. (2014). However, the previous studies have only reported
spatial error briefly as part of a suite of diagnostics. That is, spatial
extensions of conventional diagnostics of error for continuous raster
data have not been described in a comprehensive way, specifically in an
EO context. Here we demonstrate the linked use of all four diagnostics,
msd, mae, rmse and r, through their GW msd, GW mae, GW rmse and
GW r counterparts and advance them through the application of Monte
Carlo permutation tests to identify unusual clusters of error applied to
two EO case studies. The first case study evaluates datasets of the
fractional impervious surface area (%ISA) with the aim of investigating
spatial structures of error in multiple predictions by four different
models. The second case study evaluate four different forest above-
ground biomass (AGB) datasets in order to compare spatial structures of
error in multiple independent datasets.

2. Case study data
2.1. Study 1

In order to explore how spatial structures of error can differ ac-
cording to different models, four independent predictions of %ISA in
the Jakarta Metropolitan Area (JMA), Indonesia, for 2012 were pro-
duced. The %ISA was inferred from the enhanced vegetation index
(EVI) stored in moderate resolution imaging spectroradiometer
(MODIS) MOD13Q1 product, which are 16-days composite RS imagery
with a 231 m spatial resolution. Annual minimum, mean, maximum,
and standard deviation of EVI were calculated on a pixel by pixel basis
from the 24 images in 2012. These data were classified and assessed
using training and reference (validation) samples collected at 984
randomly selected grid squares of the same size and at the same loca-
tions as the MODIS MOD13Q1 product. The %ISA was visually inter-
preted from fine resolution images in available Google Earth from the
same year (Comber et al., 2016; Tsutsumida et al., 2016; Tsutsumida
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