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A B S T R A C T

Background: Individual patient data, e.g. from clinical trials, often need to be extrapolated or combined with
additional evidence when assessing long-term impact in cost-effectiveness modeling studies. Different modeling
methods can be used to represent the complex dynamics of clinical practice; the choice of which may impact
cost-effectiveness outcomes. We compare the use of a previously designed cohort discrete-time state-transition
model (DT-STM) with a discrete event simulation (DES) model.
Methods: The original DT-STM was replicated and a DES model developed using AnyLogic software. Models
were populated using individual patient data of a phase III study in metastatic colorectal cancer patients, and
compared based on their evidence structure, internal validity, and cost-effectiveness outcomes. The DT-STM
used time-dependent transition probabilities, whereas the DES model was populated using parametric dis-
tributions.
Results: The estimated time-dependent transition probabilities for the DT-STM were irregular and more sensitive
to single events due to the required small cycle length and limited number of event observations, whereas
parametric distributions resulted in smooth time-to-event curves for the DES model. Although the DT-STM and
DES model both yielded similar time-to-event curves, the DES model represented the trial data more accurately
in terms of mean health-state durations. The incremental cost-effectiveness ratio (ICER) was €172,443 and
€168,383 per Quality Adjusted Life Year gained for the DT-STM and DES model, respectively.
Conclusion: DES represents time-to-event data from clinical trials more naturally and accurately than DT-STM
when few events are observed per time cycle. As a consequence, DES is expected to yield a more accurate ICER.

1. Introduction

Healthcare expenditures have increased importantly over the last
decades, especially in oncology due to expensive novel targeted agents
and personalized treatments based on molecular markers in order to
provide patients with the best possible care [1,2]. Cost-effectiveness
analysis of such novel medical technologies is becoming increasingly
relevant, as it may inform treatment, resource allocation, and research
prioritization decisions. This is illustrated by the standardized

approaches to value cancer treatment options in terms of efficacy and
costs for clinicians [3,4] and guidance for performing cost-effectiveness
analysis alongside clinical trials [5].

High quality individual patient data (IPD) on health outcomes, re-
source use, and care procedures, e.g. obtained from randomized con-
trolled trials (RCTs), are the preferred source of evidence for cost-ef-
fectiveness analysis. However, single individual patient datasets do not
always provide all (or the only) evidence required for estimating the
(long-term) cost-effectiveness of medical technologies [6,7], indicating
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the need for cost-effectiveness models to synthesize evidence from ad-
ditional sources or to extrapolate beyond the time horizon of e.g. RCTs
[5,8]. Such cost-effectiveness models should adequately represent
clinical practice and, therefore, reflect the true nature of the evidence
used to define them, including evidence obtained from RCTs and other
sources of IPD. In other words, the model should match the evidence.

The primary outcome of many clinical oncology studies is the time
until an event of interest occurs, e.g. the patients’ overall survival or
progression-free survival from the moment of randomization, which are
typically recorded continuously over time. However, the most fre-
quently applied cost-effectiveness modeling method, i.e. discrete-time
state-transition modeling (DT-STM) [9], uses transition probabilities
over discrete time cycles with a fixed length to represent the progres-
sion of time. For example, in an DT-STM with time cycles of three weeks
patients can only progress to another health state after this predefined
and rigid time length, even though in daily practice patients may pro-
gress at any time instead of only at a multiple of three weeks. The
length of these time cycles needs to be chosen so that the complex
dynamics of clinical practice are appropriately represented [9]. For DT-
STM to represent clinical practice better, shorter cycle lengths would be
preferable [10]. Although half-cycle corrections may be applied to
avoid bias and to better approximate clinical practice [11], this still
insufficiently allows complex clinical dynamics if the cycle length is too
long [12].

Using shorter cycles lengths can be disadvantageous, mainly be-
cause of increase in number of cycles that needs to be simulated.
Besides increasing the computational burden of the simulation [9,12],
the larger number of cycles makes it more challenging to represent the
uncertainty in the transition probabilities, as the uncertainty in the
numerous cycle-specific probabilities needs to be reflected while also
maintaining the correlation between them. Furthermore, because the
expected number of observations within a cycle decreases with de-
creasing cycle length, the likelihood of substantial irregularities in
transition probabilities between successive cycles is expected to in-
crease. These irregularities are likely to impact the simulation outcomes
and do not correspond to clinical practice, as the probability of an event
is commonly expected to be similar between successive moments, i.e.
the transition-curves follow a smooth pattern over time.

Discrete event simulation (DES) is an alternative modeling tech-
nique to which the challenges associated with discrete time cycles do
not apply. Events can occur at any time in a DES model, because the
time to these events are typically modeled using smooth time-to-event
distributions, e.g. Gamma or Weibull distributions [13]. In DES, the
behavior of a system is translated into an ordered sequence of well-
defined events, which comprise specific changes in the system's state at
a specific point in time [13]. DES is well suitable for modeling clinical
processes, as it is able to incorporate patient-level characteristics and
clinical histories, competing resources, and interactions between dif-
ferent actors, e.g. physicians and patients [14]. Although originating
from the operations research field, DES is increasingly being used for
cost-effectiveness modeling [15].

Several studies have compared the use of DT-STM and DES for cost-
effectiveness analyses of medical technologies. Using the same model
structure and evidence, quantitative outcomes such as the incremental
cost-effectiveness ratio (ICER), are unlikely to be substantially different
between these modeling methods [16,17]. However, substantial dif-
ferences in outcomes may occur, if the use of DES results in a more
appropriate representation of clinical practice compared to DT- STM,
for example by including patient characteristics or considering resource
constraints [18]. Especially in the scenario in which insufficient ob-
servations are available for the chosen cycle length, and irregularities in
the cycle-specific transition probabilities are substantial when using
DT-STM, the use of DES might be preferable.

The objective of this study is to compare the evidence structure and
outcomes of a recently published cost-effectiveness DT-STM [19] with
those of a newly developed DES model. The comparison will be

performed based on the dataset of the randomized clinical phase III
CAIRO3 study, in which maintenance treatment with capecitabine and
bevacizumab (CAP-B) or observation in metastatic colorectal cancer
patients after six induction cycles of capecitabine, oxaliplatin, and
bevacizumab (CAPOX-B) was evaluated [20]. The results of this study
should facilitate a better understanding of the potential impact of se-
lecting a modeling method for cost-effectiveness modeling studies in-
formed by IPD.

2. Methods

2.1. Maintenance treatment in metastatic colorectal cancer

The CAIRO3 study (NCT00442637) is a randomized clinical phase
III study, which was carried out by the Dutch Colorectal Cancer Group
(DCCG) in 64 hospitals in the Netherlands. A total of 558 metastatic
colorectal patients with stable disease or better after six cycles of
CAPOX-B induction therapy were randomized to either receive CAP-B
maintenance treatment or observation until progression, which is re-
ferred to as the post-induction stage. CAPOX-B treatment was to be re-
introduced upon progression on either maintenance or observation, and
continued until second progression (primary end-point), which is re-
ferred to as the reintroduction stage. Although second progression was
the primary end-point of the CAIRO3 study, the cost-effectiveness
analysis of the CAIRO3 study also considered additional lines of treat-
ment after second progression [19], which is referred to as the salvage
therapy stage. Study results have been previously published [20].

2.2. State-transition model

A cohort DT-STM, i.e. Markov model, was originally developed for
the cost-effectiveness analysis of the CAIRO3 study and included four
health states: post-induction, reintroduction, salvage therapy, and
death (Fig. 1a). The model was defined using cohort level cycle-specific
transition probabilities, which were estimated from the CAIRO3 trial
using Life Tables in IBM SPSS Statistics software, version 23, IBM Corp.
(Armonk, NY, USA). This indicates that the probability of moving from
one state to another depended only on the time passed since the start of
the simulation, e.g. time from randomization until first progression.
Half-cycle correction was applied and 100 cycles of three weeks were
simulated in total. The DT-STM was built using TreeAge Pro Healthcare
v.2014, TreeAge Software (Williamstown, MA, USA), and is described
in detail elsewhere [19].

To facilitate an adequate comparison between the two modeling
methods, the DT-STM was first replicated in AnyLogic multi-method
simulation software, v.7.3, The AnyLogic Company (Chicago, IL, USA),
the environment also used for developing the DES model. This re-
plicated DT-STM was then compared to the original DT-STM to assess
potential variation in outcomes due to the use of different software
environments. In total, 100 events were generated at intervals of three
weeks, corresponding to the setup in the original DT-STM. Following
each event, the occupation of the health states was recorded and used to
calculate health and economic outcomes at the corresponding point in
time. The model was validated by structured “walk-throughs”, com-
paring (intermediate) results with calculations by hand, extreme value
analysis, trace analysis, and cross validation with the original DT-STM
during model development, and sensitivity analysis using the final
model [21,22].

2.3. Discrete event simulation model

The DES model was defined on patient-level using AnyLogic soft-
ware and according to the ISPOR-SMDM Modeling Good Research
Practice Task Force guidelines [14]. The model was defined to have the
same health states as the DT-STM (Fig. 1b). Although DES allows for
constrained resources to be accounted for, resource use was not
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