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A B S T R A C T

Studies analyzing the temporary repercussions of motor vehicle accidents are scarcer than those analyzing
permanent injuries or mortality. A regression model to evaluate the risk factors affecting the duration of tem-
porary disability after injury in such an accident is constructed using a motor insurance dataset. The length of
non-hospitalization medical leave, measured in days, following a motor accident is used here as a measure of the
severity of temporary disability. The probability function of the number of days of sick leave presents spikes in
multiples of five (working week), seven (calendar week) and thirty (month), etc. To account for this, a regression
model based on finite mixtures of multiple discrete distributions is proposed to fit the data properly. The model
provides a very good fit when the multiples for the working week, week, fortnight and month are taken into
account. Victim characteristics of gender and age and accident characteristics of the road user type, vehicle class
and the severity of permanent injuries were found to be significant when accounting for the duration of tem-
porary disability.

1. Introduction

Road traffic accidents are a major health problem worldwide and
the eighth leading cause of death (WHO, 2013). The risk factors asso-
ciated with the mortality and permanent injuries resulting from such
accidents have been widely investigated in the literature (Shibata and
Fukuda, 1994; Savolainen et al., 2011; Boucher and Santolino, 2010;
Mannering and Bhat, 2014; Alemany et al., 2013; Tay and Rifaat, 2007;
Yasmin and Eluru, 2013). However, studies analyzing the temporary
consequences of motor vehicle accidents are more scarce. The period
that motor victims are recovering from injuries has an important so-
cioeconomic impact in terms of the use of health services and lost of
productivity, among other consequences (Miller and Galbraith, 1995;
Blincoe et al., 2002). This paper proposes a regression model to eval-
uate the risk factors affecting the duration of temporary disability as a
result of road traffic injuries.

Temporary disability can be defined as the impairment of an in-
dividual's mental or physical faculties that impede the victim from
functioning normally for as long as they remain under treatment (or
until their injuries have stabilized). The most common approach taken
in the literature to analyze the severity of temporary disability is to
consider the length of hospitalization (Gardner et al., 2007; Peek-Asa
et al., 2011; Ayuso et al., 2015; Santolino et al., 2012; Guria, 1990), and

to examine its relationship with the characteristics of the injury suffered
and those of the victim.

Analyses of the duration of hospitalization are in part motivated by
the availability of data. However, such an approach may underestimate
the total social costs of a traffic injury. Non-serious injuries do not, as a
rule, require hospitalization, but may nevertheless be associated with
substantial temporary disability, the case, for example, of whiplash
injuries (Buitenhuis et al., 2009). For this reason, Ebel et al. (2004)
made simulated projections of the number of work days lost as a result
of motor vehicle crashes and studied the factors that influenced a vic-
tim's return to work. Berecki-Gisolf et al. (2013), on the other hand,
restricted their analysis of the work disability period to musculoskeletal
and orthopedic traffic injuries.

In this study our attention is focused on the analysis of factors af-
fecting the length of temporary disability without hospitalization. The
length of hospitalization was excluded from the analysis, since key
drivers of hospital length of stay have been already investigated (Ayuso
et al., 2015; Santolino et al., 2012). A motor insurance claim dataset is
used to evaluate the number of days of medical leave taken by accident
victims. Medical leave is defined in this article as the out-of-hospital
period taken by motor victims to recover from injuries or until their
injuries have stabilized. In Spain, the period of non-hospitalized tem-
porary disability as a consequence of a motor crash is set by doctors of
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the public health system who determine the number of days of medical
leave required by out-patients. This information is required by in-
surance companies to compute the motor insurance compensation. So,
the period of medical leave refers to the out-of-hospital recovering time
after the accident taken by any type of motor victim and not only by the
working population.

The frequency distribution of the length of non-hospitalization
temporary disability (measured in days) exhibits regular spikes at cer-
tain multiples. The periodic peaks observed in the frequency distribu-
tion could reflect the time scales used by doctors when determining the
number of days of sick leave before the next scheduled medical ex-
amination. For example, a doctor is more likely to program a re-
evaluation of the medical evolution of injuries in two weeks’ time than
in thirteen days. This decision may be because doctors think on a daily/
weekly/monthly scale when scheduling patient evaluations, based on
the severity of injuries and the number of days the patient will be off
sick. The doctor's agenda constraints may also be a reason (i.e. the
doctor only visits one day in the week). In fact, regularly spaced spikes
in the frequency distribution are observed at multiples of 5, 7, 15 and
30.

Data with periodic peaks are observed in various applications.
Examples include the misreporting of age (Siegel and Swanson, 2004;
Camarda et al., 2008), number of cigarettes smoked (Wang et al., 2012)
and duration of unemployment (Torelli and Trivellato, 1993; Wolff and
Augustin, 2003). This phenomenon of rounding exact counts to even
multiples of reported units is known as digit preference or heaping. The
literature on this phenomenon assumes that data can be interpreted as
indirect (or rounded) observations of a latent distribution. The goal
usually pursued is to model the unobserved latent variable using
smoothing methods (Camarda et al., 2008; Wang et al., 2012; Wang and
Heitjan, 2008; Wang and Wertelecki, 2013).

A different modeling approach is proposed in this paper. We directly
model the random variable with peaks rather than with an unobserved
smoothed variable. The methodology for fitting frequency data with
regular spikes is based on finite mixtures of discrete distributions of
different multiplicities, as proposed by Bermúdez et al. (2017). This
methodology is extended to the regression modeling analysis reported
in this article. A discrete mixture regression model is developed to fit
data with regular spikes conditioned on a set of covariates. The dura-
tion of temporary disability following a traffic accident is modeled,
including, as explanatory variables, characteristics of the victim
(gender and age) and the accident (road user type, vehicle class and
severity of permanent injuries).

The article is organized as follows. The regression model is pre-
sented in the next section. Section 3 describes the data. The results are
shown in Section 4. Concluding remarks are given in Section 5.

2. Regression model

2.1. Discrete distributions

Let X ∈ ℕ be a discrete random variable that takes non-negative
integer values including zero. In statistics, the most frequently used
parametric distributions to model discrete random variables are the
Poisson distribution and the negative binomial (NB) distribution
(Boucher and Santolino, 2010). The probability function (pf) of the
Poisson distribution with parameter λ, denoted as P λ( )p

1 , is given by
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The Poisson distribution has the following moments,

= =E X λ X λ( ) and Var( ) .

The Poisson distribution assumes variance equal to the mean and,
hence, it has limitations when dealing with overdispersed data, i.e.
when the sample variance exceeds the sample mean. In this context, the

negative binomial distribution is often more adequate. The pf of the
negative binomial distribution with parameter λ and r, where λ is the
mean parameter and r the additional parameter to account for over-
dispersion, is given by
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The NB distribution has the following moments,
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It is easy to see that if r→∞ the negative binomial tends to the
Poisson.

2.2. Multiple discrete distributions

Often, the variable of interest is the sum of lower-level units and we
are specifically interested in analyzing the random variable measured in
the lower level units. For example, a survey will ask how many packs of
cigarettes the subject smokes per week, because this is easier to cal-
culate than the actual number of cigarettes; however, the variable of
interest in the study is the number of cigarettes (let's say twenty per
pack). In this case, the variable of interest takes multiples of twenty
(that is 0, 20, 40, …).

To deal with data measured on a different scale to the scale of in-
terest, multiple discrete distributions are used. Such distributions are
generalizations of the discrete distributions that allow for different
multiplicities. The multiple discrete distribution versions of the Poisson
and NB are introduced.

The pf of the multiple Poisson with multiplicity m and parameter λ,
denoted as Pm

p, is as follows:

= = ⎧
⎨⎩

= = …−
P X y y x( ) mx, 0, 1, 2,

0 otherwise.
m
p

λ λ
x

exp( )
!

x

It is straightforward to obtain the first two moments:

= =E X mλ X m λ( ) and Var( ) ,2

This generalization gives positive probability to points 0, m, 2m, …
and 0 elsewhere. So, the Poisson distribution can be understood as a
particular case of the multiple Poisson distribution with a multiplicity
equal to one, m=1. Using a similar approach, we can define the
multiple negative binomial distribution. The pf and first two moments
of the multiple negative binomial with multiplicity m and parameters λ
and r are as follows:
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Note that the multiple Poisson distribution is also a limiting case of
the multiple negative binomial distribution when r→∞.

2.3. A finite mixture discrete distribution

When the random variable of interest can be interpreted as resulting
from different subpopulations/subgroups, the finite mixture distribu-
tion can be easily derived from distributions of the individual sub-
populations/subgroups. Alternative mixtures of discrete distributions
have been defined in the literature. For example, in the road safety
literature, the well-known zero-inflated distribution is a mixture be-
tween a Bernoulli distributed random variable and a discretely dis-
tributed random variable, such as a Poisson or negative binomial dis-
tribution (Lord et al., 2005; Ayuso et al., 2015; Anastasopoulos, 2016;
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