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A B S T R A C T

The accuracy and efficiency of a numerical strategy for sequential nonlinear cyclic analyses of carbon nanotube
nanocomposites are investigated. The computational approach resorts to a nonlinear 3D finite element im-
plementation that seeks to solve the cyclic hysteretic response of the nanocomposite. A variant of the Newton-
Raphson method within a time integration scheme is proposed whereby the elastic tangent matrix is chosen as
iteration matrix without paying the price of its iterative update. This is especially rewarding in the context of the
employed mechanical model which exhibits hysteresis manifested through a discontinuous change in the stiff-
ness at the reversal points where the loading direction is reversed. Key implementation aspects – such as the
integration of the nonlinear 3D equations of motion, the numerical accuracy/efficiency as a function of the time
step or the mesh size – are discussed. In particular, efficiency is regarded as performing fast computations
especially when the number of cyclic analyses becomes large. By making use of laptop CPU cores, a good speed
of computations is achieved not only through parallelization but also employing a caching procedure for the
iteration matrix.

1. Introduction

Designing new multiphase, multiscale materials such as nanos-
tructured materials via a simulation-driven approach is typically re-
garded as extremely challenging due to the high computational cost and
time. This is particularly true when the material behavior is nonlinear
and hysteretic, and several optimization cycles are required. This jus-
tifies the development of numerical solution strategies that, coupled
with efficient global optimization algorithms, can achieve high effi-
ciency and accuracy.

The material here under investigation is a carbon nanotube nano-
composite. The employed mesoscale mechanical model for the nano-
composite was previously proposed and validated in [1,2] and regards
the two-phase material (the isotropic hosting polymer and the carbon
nanotubes introduced as inelastic cylindrical inclusions) as a homo-
genized inelastic continuum.

To compute the cyclic response of the nanocomposite, we modified
a variant of the Newton-Raphson method within a time integration
scheme. In the modified Newton–Raphson scheme the iteration matrix
is frozen to the elastic tangent matrix and thus is assembled only once
for an individual cyclic analysis as well as for the whole parametric

analysis when the loading amplitude is changed. The reliability of the
employed method is here supported by an extensive campaign of nu-
merical tests aimed at comparing the baseline method performance
with the same method in a parallel implementation.

The implementation of the finite element numerical strategy makes
use of FEniCS [3], an open-source computing platform for solving
partial differential equations. The core algorithm solves the equations
of motion of the nanocomposite for a given loading program. On top of
it an optimization algorithm is implemented according to the Differ-
ential Evolution method to optimize macroscopic material properties
such as the damping ratio over a given range of strains.

An updated review of Differential Evolution methods can be found
in [4,5], but the more general field of nonlinear optimization, which
includes stochastic and randomized algorithms, is growing very stea-
dily. Recent improvements to resolve dynamic optimization problems
via meta-heuristic techniques can be found in [6], while recent ad-
vances in ant colony and particle swarm algorithms are discussed in [7]
and [8], respectively. The present paper does not discuss the optimi-
zation problem which is instead reported in a recent paper [9]. Indeed,
most of the computational cost of an optimization algorithm is asso-
ciated with the numerical evaluation of the objective function [10–12],
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especially when, as in our case, this function is computed by solving
several cyclic analyses of a highly nonlinear problem.

In this work our numerical strategy is shown to reduce considerably
the computational time while preserving accuracy. Note that the im-
plemented approach is not amenable to DE optimization only, but can
also be extended to more sophisticated numerical strategies such as
path-following.

Contribution. The main contribution is in the proposition of a variant of
the Newton-Raphson scheme that makes use of the elastic matrix as
iteration matrix which is thus assembled only once during a single
cyclic analysis across which the tangent stiffness changes. This freezing
of the iteration matrix works also for full parametric analyses when
several cyclic responses are computed by changing the loading
amplitude. The reliability of the employed method is corroborated by
a rich campaign of numerical tests aimed at comparing the baseline
method performance with the same method in a parallel
implementation. The main objective of the numerical is to enable an
overall multi-objective material optimization resorting to full 3D
analyses at reasonable costs and computational time.

Outline. The manuscript is organized as follows. In Section 2 we
summarize the nonlinear hysteretic model for CNT nanocomposite
materials, while in Section 3 we describe both space and time
discretizations, present a specialized Newton–Raphson time
integration scheme, and we outline the caching mechanism that
underlies our proposed numerical procedure. In Section 4 we discuss
both the accuracy and efficiency of our methodology by a numerical
campaign on both a beam- and a plate-like 3D nanocomposite sample.

2. Nanocomposite hysteretic model in a nutshell

The nanocomposite mesoscale hysteretic model here employed was
proposed in [1,2,9]. In particular, the model is framed within the class
of homogeneization methods, developed initially for linear elasticity.
Such methods were referred to by Benveniste [13] as “Equivalent In-
clusion–Average Stress” methods.

By considering the nanocomposite made of two material phases,
namely, the hosting polymer matrix (here and henceforth denoted by
subscript “m”) and the carbon nanotube (denoted by subscript “c”)
modelled as cylindrical solid inclusions [14,15], the Mori-Tanaka ap-
proach allows us to consider the nanocomposite stresses and strains as
averaged continuum tensors of the two phases treated themselves as
two continuum media. In particular, the rates of stress and strain obey
to the following equations:

= + = +T T T E E Eϕ ϕ ϕ ϕ˙ ˙ ˙ , ˙ ˙ ˙
m m c c m m c c (1)

where the scalar ϕc is the CNT volume fraction, while = −ϕ ϕ: 1m c is its
complementary part describing the volume fraction occupied by the
hosting matrix. According to [2], the matrix phase can be represented
as a linear elastic continuum, while the CNT phase as an inelastic
continuum which can describe through its inelastic response the stick-
slip phenomenon:1

= = −T L E T L E E˙ : ˙ , ˙ : ( ˙ ˙ )m m m c c c
p (2)

indicating with Lm and Lc the fourth-order tensor of elastic coefficients
of the two material phases: in particular, such phases are modelled as

isotropic materials, thus Lm and Lc collect the well-known stiffness
coefficients depending on Young’s moduli (E ,m Ec) and Poisson ratios
(ν ,m νc), respectively.

A key aspect of the here employed modeling is that the stick-slip-
induced displacement/strain/stress discontinuity across the interfaces
is circumvented by accounting for the CNTs inelastic eigenstrains which
provide additional localized strains responsible for interface stress
discontinuitiies driving the interfacial energy dissipation.

Moreover, the CNTs are considered perfectly and uniformly aligned,
in the sense specified in the numerical tests. This is clearly a simplifi-
cation of real nanocomposites which can never exhibit perfectly aligned
and dispersed CNTs due to local entangling and agglomerations.
However, consideration of composites with aligned or randomly or-
iented nanotubes and with various CNT lengths and volume fractions
does not change the modeling framework of “Equivalent
Inclusion–Average Stress” method here adopted [13,14]. Moreover, the
macroscopic mechanical chararcterization of the nanocomposite turns
out to be in good agreement with experimental evidences [2,14,16].

The hysteretic model is obtained in terms of the following incre-
mental constitutive law relating the stress rate Ṫ with the strain rate Ė :

= −T L E L E˙ : ˙ : ˙ ,e p
p

(3)

where Le and Lp are fourth order tensors collecting the elastic and
tangent (plastic) coefficients, respectively, and Ėp is the inelastic strain
rate which very much affects the nonlinear, hysteretic response of the
model. In particular, the fourth order tensors are related to the Eshelby
tensor S, regulating the strain transformations at the CNT-matrix in-
terface according to the Eshelby theory of equivalent inclusion [13],
and to the elastic mismatch −L Lc m between the nominal (isotropic)
elastic tensors of the two phases:

= + −L L I B L Lϕ: [ : ( )],e m c c m (4a)

=L L B Lϕ : : ,p c m c (4b)

in which the following fourth order tensor was introduced:

= + − −B L L L Sϕ: [ ( ): ] .m m c m
1 (5)

The inelastic strain rate actually models the stick-slip phenomenon
at the CNT-matrix interface according to a Bouc-Wen-like evolution
law, see [2,9]. The corresponding stress rate, namely =T L E˙ : : ˙ ,p

c
p is

expressed as
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where = +μ E ν/[2(1 )]c c c is the CNT shear modulus, So is the interfacial
shear strength,

   ̂ = + − = ( )T T T Th γ1 (sign(Φ̇( )) 1) , Φ( ) : ,2
3
2

dev dev 1/2

(7)

the stress discontinuity T is introduced as

 = − − −T L L E L T( ): ( : ),c m c c
1 p (8)

and the CNT strain rate Ėc is associated with the nanocomposite strain
rate Ė , i.e.:

= = + −− −E A E A I S L L Lϕ˙ : ˙ , : [ : : ( )].c c
1

c m
1

c m (9)

The piece-wise function ̂h2 governs the loading/unloading direction
while TΦ( ) is the von Mises function of the interfacial stress dis-
continuity T whose deviatoric part is denoted by T dev. Finally, n≥ 2
and 0< γ<1 are the Bouc-Wen parameters, governing (inversely) the
smoothness of the loading curve up to the yield stress So and the
smoothness of the loading/unloading phases, respectively.

By substituting (9) into (6), and considering (8), the inelastic stress
rate Ṫ p is expressed as a highly nonlinear function of the displacement
field u (through its corresponding linearized strain E), the velocity u̇
(through Ė) and the stress discontinuity T itself. Therefore, the incre-
mental constitutive law (3) can be finally recast as

1We adopt Gibbs notation for vector and tensor fields. The dot and cross
products of the vectors u and v are denoted by u · v and u× v, respectively. The
image of vector u under the application of tensor A is expressed as A · u. On the
other hand, the tensor product between vectors u and v is denoted by u⊗v. The
same notation A⊗B is employed to indicate the tensor product between second-
order tensors A and B. Their inner product is expressed as

= =⊤A B A B A B: tr( · ) ,ij ij where A⊤ indicates the transpose of A.
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